Image enlargement via interpolatory subdivision

被引:7
|
作者
Liu, C. [1 ]
Luo, X. [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China
[3] Minist Educ, Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China
关键词
CUBIC CONVOLUTION;
D O I
10.1049/iet-ipr.2010.0223
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel image enlargement method based on a modified interpolatory subdivision scheme is proposed in this study. The subdivision scheme is a modification from the 4-point interpolatory subdivision by substituting the interpolation rule for a tangent-constrained Hermite interpolation and in surface case the subdivision is derived from a Ferguson patch. By estimating the gradients of the Ferguson patch, the authors present an image enlargement algorithm preserving the sharp edges. Benefit from the advantages of subdivision, this algorithm runs fast. Numerical experiments illustrate the efficiency of the novel method.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [1] Interpolatory subdivision curves via diffusion of normals
    Ohtake, Y
    Belyaev, A
    Seidel, HP
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2003, : 22 - 27
  • [2] Computation of interpolatory splines via triadic subdivision
    Valery A. Zheludev
    Amir Z. Averbuch
    Advances in Computational Mathematics, 2010, 32
  • [3] Computation of interpolatory splines via triadic subdivision
    Zheludev, Valery A.
    Averbuch, Amir Z.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (01) : 63 - 72
  • [4] Non-uniform interpolatory subdivision via splines
    Karciauskas, Kestutis
    Peters, Joerg
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 31 - 41
  • [5] An interpolatory subdivision curves scheme via normal control
    Ding, YD
    Wei, DM
    CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 405 - 406
  • [6] Interpolatory subdivision schemes
    Dyn, N
    TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 25 - 50
  • [7] On interpolatory subdivision from approximating subdivision scheme
    Luo, Zhongxuan
    Qi, Wanfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 339 - 349
  • [8] Interpolatory √3-subdivision
    Labsik, U
    Greiner, G
    COMPUTER GRAPHICS FORUM, 2000, 19 (03) : C131 - +
  • [9] Interpolatory subdivision schemes and wavelets
    Micchelli, CA
    JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) : 41 - 71
  • [10] Multidimensional interpolatory subdivision schemes
    Riemenschneider, SD
    Shen, ZW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) : 2357 - 2381