Discrete quantum walks hit exponentially faster

被引:110
|
作者
Kempe, J [1 ]
机构
[1] Univ Paris 11, LRI, CNRS, UMR 8623, F-91405 Orsay, France
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
Stochastic Process; Probability Theory; Polynomial Time; Discrete Time; Mathematical Biology;
D O I
10.1007/s00440-004-0423-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the question: what processes take polynomial time on a quantum computer that require exponential time classically? We show that the hitting time of the discrete time quantum walk on the n-bit hypercube from one corner to its opposite is polynomial in n. This gives the first exponential quantum-classical gap in the hitting time of discrete quantum walks. We provide the basic framework for quantum hitting time and give two alternative definitions to set the ground for its study on general graphs. We outline a possible application to sequential packet routing.
引用
收藏
页码:215 / 235
页数:21
相关论文
共 50 条
  • [1] Discrete quantum walks hit exponentially faster
    Kempe, J
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION, 2003, 2764 : 354 - 369
  • [2] Discrete Quantum Walks Hit Exponentially Faster
    Julia Kempe
    Probability Theory and Related Fields, 2005, 133 : 215 - 235
  • [3] Coins Make Quantum Walks Faster
    Ambainis, Andris
    Kempe, Julia
    Rivosh, Alexander
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 1099 - 1108
  • [4] Decoherence in discrete quantum walks
    Kendon, V
    Tregenna, B
    DECOHERENCE AND ENTROPY IN COMPLEX SYSTEMS, 2004, 633 : 253 - 267
  • [5] Continuous limit of discrete quantum walks
    Dheeraj, M. N.
    Brun, Todd A.
    PHYSICAL REVIEW A, 2015, 91 (06)
  • [6] Quantum walks and discrete gauge theories
    Arnault, Pablo
    Debbasch, Fabrice
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [7] Driven discrete time quantum walks
    Hamilton, Craig S.
    Barkhofen, Sonja
    Sansoni, Linda
    Jex, Igor
    Silberhorn, Christine
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Discrete Geometry from Quantum Walks
    Debbasch, Fabrice
    CONDENSED MATTER, 2019, 4 (02): : 1 - 16
  • [9] Exponentially Decaying Velocity Bounds of Quantum Walks in Periodic Fields
    Houssam Abdul-Rahman
    Günter Stolz
    Communications in Mathematical Physics, 2023, 403 : 1297 - 1327
  • [10] A simulator for discrete quantum walks on lattices
    Rodrigues, J.
    Paunkovic, N.
    Mateus, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (04):