A Comparative Study of Using Spatial-Temporal Graph Convolutional Networks for Predicting Availability in Bike Sharing Schemes

被引:8
|
作者
Chen, Zhengyong [1 ]
Wu, Hongde [1 ]
O'Connor, Noel E. [1 ]
Liu, Mingming [1 ]
机构
[1] Dublin City Univ, Sch Elect Engn, Dublin, Ireland
关键词
D O I
10.1109/ITSC48978.2021.9564831
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately forecasting transportation demand is crucial for efficient urban traffic guidance, control and management. One solution to enhance the level of prediction accuracy is to leverage graph convolutional networks (GCN), a neural network based modelling approach with the ability to process data contained in graph based structures. As a powerful extension of GCN, a spatial-temporal graph convolutional network (ST-GCN) aims to capture the relationship of data contained in the graphical nodes across both spatial and temporal dimensions, which presents a novel deep learning paradigm for the analysis of complex time-series data that also involves spatial information as present in transportation use cases. In this paper, we present an Attention-based ST-GCN (AST-GCN) for predicting the number of available bikes in bike-sharing systems in cities, where the attention-based mechanism is introduced to further improve the performance of an ST-GCN. Furthermore, we also discuss the impacts of different modelling methods of adjacency matrices on the proposed architecture. Our experimental results are presented using two real-world datasets, Dublinbikes and NYC-Citi Bike, to illustrate the efficacy of our proposed model which outperforms the majority of existing approaches.
引用
收藏
页码:1299 / 1305
页数:7
相关论文
共 50 条
  • [1] Predicting travel demand of a bike sharing system using graph convolutional neural networks
    Behroozi, Ali
    Edrisi, Ali
    PUBLIC TRANSPORT, 2025, 17 (01) : 281 - 317
  • [2] Hybrid Spatial-Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction
    Xiao, Xiao
    Jin, Zhiling
    Hui, Yilong
    Xu, Yueshen
    Shao, Wei
    REMOTE SENSING, 2021, 13 (16)
  • [3] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394
  • [4] Railway Delay Prediction with Spatial-Temporal Graph Convolutional Networks
    Heglund, Jacob S. W.
    Taleongpong, Panukorn
    Hu, Simon
    Tran, Huy T.
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [5] Spatial-Temporal Graph Convolutional Networks for Sign Language Recognition
    de Amorim, Cleison Correia
    Macedo, David
    Zanchettin, Cleber
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 646 - 657
  • [6] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [7] Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
    Liu, Yunchang
    Wan, Fei
    Liang, Chengwu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 4343 - 4361
  • [8] Predicting Team Performance with Spatial Temporal Graph Convolutional Networks
    Hu, Shengnan
    Sukthankar, Gita
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2342 - 2348
  • [9] Topological Elastic Graph Convolutional Networks for Spatial-Temporal Sequence Forecasting
    Wang, Yiwen
    Xu, Meiling
    Tang, Lixin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [10] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644