Random homogenization and convergence to integrals with respect to the Rosenblatt process

被引:13
|
作者
Gu, Yu [1 ]
Bal, Guillaume [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1016/j.jde.2012.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the random fluctuation theory of a one dimensional elliptic equation with highly oscillatory random coefficient. Theoretical studies show that the rescaled random corrector converges in distribution to a stochastic integral with respect to Brownian motion when the random coefficient has short-range correlation. When the random coefficient has long-range correlation, it was shown for a large class of random processes that the random corrector converged to a stochastic integral with respect to fractional Brownian motion. In this paper, we construct a class of random coefficients for which the random corrector converges to a non-Gaussian limit. More precisely, for this class of random coefficients with long-range correlation, the properly rescaled corrector converges in distribution to a stochastic integral with respect to a Rosenblatt process. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1069 / 1087
页数:19
相关论文
共 50 条
  • [1] A Weak Convergence to Rosenblatt Process
    孙西超
    闫理坦
    王志
    JournalofDonghuaUniversity(EnglishEdition), 2012, 29 (06) : 480 - 483
  • [2] A strong convergence to the Rosenblatt process
    Garzon, Johanna
    Torres, Soledad
    Tudor, Ciprian A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 630 - 647
  • [3] A weak convergence to rosenblatt process
    Sun, Xi-Chao
    Yan, Li-Tan
    Wang, Zhi
    Journal of Donghua University (English Edition), 2012, 29 (06) : 480 - 483
  • [4] Random integrals and correctors in homogenization
    Bal, Guillaume
    Garnier, Josselin
    Motsch, Sebastien
    Perrier, Vincent
    ASYMPTOTIC ANALYSIS, 2008, 59 (1-2) : 1 - 26
  • [5] Approximating the Rosenblatt process by multiple Wiener integrals
    Yan, Litan
    Li, Yumiao
    Wu, Di
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20
  • [6] CONVERGENCE OF RANDOM OSCILLATORY INTEGRALS IN THE PRESENCE OF LONG-RANGE DEPENDENCE AND APPLICATION TO HOMOGENIZATION
    Lechiheb, Atef
    Nourdin, Ivan
    Zheng, Guangqu
    Haouala, Ezzedine
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (02): : 271 - 286
  • [7] On the convergence of multiple random integrals
    Peccati, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 37 (3-4) : 429 - 470
  • [9] ON A VARIANT OF RANDOM HOMOGENIZATION THEORY: CONVERGENCE OF THE RESIDUAL PROCESS AND APPROXIMATION OF THE HOMOGENIZED COEFFICIENTS
    Legoll, Frederic
    Thomines, Florian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 347 - 386
  • [10] A White Noise Approach to Stochastic Integration with Respect to the Rosenblatt Process
    Arras, Benjamin
    POTENTIAL ANALYSIS, 2015, 43 (04) : 547 - 591