Multiscale techniques for the detection of precipitation using thermal IR satellite images

被引:26
|
作者
Turiel, A [1 ]
Grazzini, J
Yahia, H
机构
[1] Inst Ciencias Mar, Barcelona 08003, Spain
[2] Fdn Res & Technol, Reg Anal Div, Inst Appl & Computat Math, Iraklion 71110, Crete, Greece
[3] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
关键词
edge detection; fractal; multifractal; multiscale processing; rain detection;
D O I
10.1109/LGRS.2005.852712
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
It is thought that satellite thermal infrared (IR) images can aid to the detection of precipitation, an interesting possibility due to the existence of geostationary satellites with thermal IR sensors which would enable a good spatial and temporal tracking of rain and storms. In this letter, we explore the application of multiscale/multifractal techniques in the design of new methods for the assessment and tracking of pluviometry. We first identify the main streamlines by a singularity analysis of the wavelet projections of the IR record. From the streamlines, we derive a proxy scalar image that represents the result of pure horizontal advection. From the comparison of original and proxy we localize the places at which horizontal advection fails, which we identify with convection places. We illustrate our methodology with thermal IR images from Metosat acquired during heavy tropical rainfall, and compare the results with some data from the Tropical Rainfall Measuring Mission satellite.
引用
收藏
页码:447 / 450
页数:4
相关论文
共 50 条
  • [1] Multiscale Change Detection in Multitemporal Satellite Images
    Celik, Turgay
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 820 - 824
  • [2] Analysis of Various Change Detection Techniques Using Satellite Images
    Kotkar, Snehal R.
    Jadhav, B. D.
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING (ICIP), 2015, : 664 - 668
  • [3] Detection of buildings from different satellite images by using image enhancement techniques
    Çetin, M
    Musaoglu, N
    REMOTE SENSING IN TRANSITION, 2004, : 245 - 251
  • [4] Authentication of Thermal Tomographic Images using Histogram Similarity Detection Techniques
    Basak, Chayan Kumar
    Kanjilal, Mrinmay
    Sarkar, Gautam
    Kundu, Palash Kumar
    2022 IEEE CALCUTTA CONFERENCE, CALCON, 2022, : 75 - 79
  • [5] Multiscale Object Detection Algorithm for Satellite Remote-Sensing Images
    Xiang Jianhong
    Chen Zhenxing
    Wang Linyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [6] Detection and classification of rainfall in South America using satellite images and machine learning techniques
    Andelsman, F.
    Masuelli, S.
    Tamarit, F.
    PAPERS IN PHYSICS, 2023, 15
  • [7] Processing of Thermal Satellite Images Using MATLAB
    Ujjwal, Kanishk
    Sheshadri, Shraddha Meda
    Sabhari, Deeksha
    Dhanuka, Aarushi
    Singh, Aprajita
    2022 IEEE AEROSPACE CONFERENCE (AERO), 2022,
  • [8] Multiscale Convolutional Neural Networks for Geospatial Object Detection in VHR Satellite Images
    Yao, Qunli
    Hu, Xian
    Lei, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) : 23 - 27
  • [9] Maritime Ship Detection Method for Satellite Images Based on Multiscale Feature Fusion
    Si, Jihao
    Song, Binbin
    Wu, Jixuan
    Lin, Wei
    Huang, Wei
    Chen, Shengyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6642 - 6655
  • [10] Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition
    Kong, Seong G.
    Heo, Jingu
    Boughorbel, Faysal
    Zheng, Yue
    Abidi, Besma R.
    Koschan, Andreas
    Yi, Mingzhong
    Abidi, Mongi A.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 71 (02) : 215 - 233