OPTION PRICING UNDER GENERAL GEOMETRIC RIEMANNIAN BROWNIAN MOTIONS

被引:0
|
作者
Zhang, Yong-Chao [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Taishan Rd 143, Qinhuangdao 066004, Peoples R China
关键词
geometric Riemannian Brownian motion; Stratonovich integral; option pricing; STOCHASTIC VOLATILITY; PRICES;
D O I
10.4134/BKMS.b150731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a partial differential equation for European options on a stock whose price process follows a general geometric Riemannian Brownian motion. The existence and the uniqueness of solutions to the partial differential equation are investigated, and then an expression of the value for European options is obtained using the fundamental solution technique. Proper Riemannian metrics on the real number field can make the distribution of return rates of the stock induced by our model have the character of leptokurtosis and fat-tail; in addition, they can also explain option pricing bias and implied volatility smile (skew).
引用
收藏
页码:1411 / 1425
页数:15
相关论文
共 50 条
  • [1] Option pricing under modified geometric Brownian motion with a fuzzy drift
    Ramsden, Bevan
    Guo, Renkuan
    Zhao, Ruiqing
    PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2008, 7 : 415 - 427
  • [2] Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing
    Stojkoski, Viktor
    Sandev, Trifce
    Basnarkov, Lasko
    Kocarev, Ljupco
    Metzler, Ralf
    ENTROPY, 2020, 22 (12) : 1 - 34
  • [3] Option pricing of geometric Asian options in a subdiffusive Brownian motion regime
    Guo, Zhidong
    Wang, Xianhong
    Zhang, Yunliang
    AIMS MATHEMATICS, 2020, 5 (05): : 5332 - 5343
  • [4] On option pricing for non-lognormal perturbations of geometric Brownian motion
    Stummer, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S857 - S858
  • [5] Double-barrier option pricing equations under extended geometric Brownian motion with bankruptcy risk
    Hsu, Yu-Sheng
    Chen, Pei-Chun
    Wu, Cheng-Hsun
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [6] Pricing vulnerable options under correlated skew Brownian motions
    Guo, Che
    Wang, Xingchun
    JOURNAL OF FUTURES MARKETS, 2022, 42 (05) : 852 - 867
  • [7] ON BOUNCING GEOMETRIC BROWNIAN MOTIONS
    Liu, Xin
    Kulkarni, Vidyadhar G.
    Gong, Qi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 591 - 617
  • [8] Geometric Asian power option pricing with transaction cost under the geometric fractional Brownian motion with w sources of risk in fuzzy environment
    Alsenafi, Abdulaziz
    Alazemi, Fares
    Najafi, Alireza
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 453
  • [9] An Optimal Strategy for Pairs Trading Under Geometric Brownian Motions
    Jingzhi Tie
    Hanqin Zhang
    Qing Zhang
    Journal of Optimization Theory and Applications, 2018, 179 : 654 - 675
  • [10] An Optimal Strategy for Pairs Trading Under Geometric Brownian Motions
    Tie, Jingzhi
    Zhang, Hanqin
    Zhang, Qing
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (02) : 654 - 675