Thin-film materials with 'smart' properties that react to temperature variations, electric or magnetic fields, and/or pressure variations have recently attracted a great deal of attention. Vanadium dioxide (VO2) belongs to this family of 'smart materials' because it exhibits a semiconductor-to-metal first-order phase transition near 340 K, accompanied by an abrupt change in its resistivity and near-infrared transmission. It is also of great interest in condensed-matter physics because it is a classic strongly correlated electron system. In order to integrate vanadium dioxide into microelectronic circuits, thin-film growth of VO2 has been studied extensively, and studies of VO2 nanoparticles have shown that the phase transition is size-dependent. This paper presents a broad overview of the growth techniques that have been used to produce thin films and nanoparticles of VO2, including chemical vapor deposition, sol-gel synthesis, sputter deposition and pulsed laser deposition. Representative deposition techniques are described, and typical thin-film characteristics are presented, with an emphasis on recent results obtained using pulsed laser deposition. The opportunities for growing epitaxial films of VO2, and for doping VO2 films to alter their transition temperature and switching characteristics, are also discussed.