PIPELINE RUPTURE DETECTION USING REAL-TIME TRANSIENT MODELLING AND CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Smith, Joel [1 ]
Chae, Jaehee [1 ]
Learn, Shawn [2 ]
Hugo, Ron [1 ]
Park, Simon [1 ]
机构
[1] Univ Calgary, Calgary, AB, Canada
[2] TransCanada Pipeline Ltd, Calgary, AB, Canada
关键词
Leak Detection; Rupture; Artificial Intelligence; Computational Pipeline Monitoring; LEAK DETECTION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Demonstrating the ability to reliably detect pipeline ruptures is critical for pipeline operators as they seek to maintain the social license necessary to construct and upgrade their pipeline systems. Current leak detection systems range from very simple mass balances to highly complex models with real-time simulation and advanced statistical processing with the goal of detecting small leaks around 1% of the nominal flow rate. No matter how finely-tuned these systems are, however, they are invariably affected by noise and uncertainties in a pipeline system, resulting in false alarms that reduce system confidence. This study aims to develop a leak detection system that can detect leaks with high reliability by focusing on sudden-onset leaks of various sizes (ruptures), as opposed to slow leaks that develop over time. The expected outcome is that not only will pipeline operators avoid the costs associated with false-alarm shut downs, but more importantly, they will be able to respond faster and more confidently in the event of an actual rupture. To accomplish these goals, leaks of various sizes are simulated using a real-time transient model based on the method of characteristics. A novel leak detection model is presented that fuses together several different preprocessing techniques, including convolution neural networks. This leak detection system is expected to increase operator confidence in leak alarms, when they occur, and therefore decrease the amount of time between leak detection and pipeline shutdown.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    FRONTIERS IN BIG DATA, 2023, 6
  • [2] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [3] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [4] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):
  • [5] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [6] Real-time polyp detection model using convolutional neural networks
    Alba Nogueira-Rodríguez
    Rubén Domínguez-Carbajales
    Fernando Campos-Tato
    Jesús Herrero
    Manuel Puga
    David Remedios
    Laura Rivas
    Eloy Sánchez
    Águeda Iglesias
    Joaquín Cubiella
    Florentino Fdez-Riverola
    Hugo López-Fernández
    Miguel Reboiro-Jato
    Daniel Glez-Peña
    Neural Computing and Applications, 2022, 34 : 10375 - 10396
  • [7] Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
    Bollepalli, Sandeep Chandra
    Sevakula, Rahul K.
    Au-Yeung, Wan-Tai M.
    Kassab, Mohamad B.
    Merchant, Faisal M.
    Bazoukis, George
    Boyer, Richard
    Isselbacher, Eric M.
    Armoundas, Antonis A.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (23):
  • [8] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396
  • [9] A Real-Time Ball Detection Approach Using Convolutional Neural Networks
    Teimouri, Meisam
    Delavaran, Mohammad Hossein
    Rezaei, Mahdi
    ROBOT WORLD CUP XXIII, ROBOCUP 2019, 2019, 11531 : 323 - 336
  • [10] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +