Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality

被引:90
|
作者
Lu, Guozhen [1 ]
Zhu, Jiuyi [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
DIFFERENTIAL-EQUATIONS; ELLIPTIC-EQUATIONS; SHARP CONSTANTS; CLASSIFICATION;
D O I
10.1007/s00526-011-0398-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha be a real number satisfying 0 < alpha < n, 0 <= t < alpha, alpha*(t) = 2(n-t)/n-alpha. We consider the integral equation u(x) = integral(Rn)u(alpha*(t)-1)(y)/|y|(t)|x-y|(n-alpha)dy, which is closely related to the Hardy-Sobolev inequality. In this paper, we prove that every positive solution u(x) is radially symmetric and strictly decreasing about the origin by the method of moving plane in integral forms. Moreover, we obtain the regularity of solutions to the following integral equation u(x) = integral(Rn)|u(y)|(p)u(y)/|y|(t)|x-y|n(-alpha)dy (2) that corresponds to a large class of PDEs by regularity lifting method.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 50 条
  • [1] Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality
    Guozhen Lu
    Jiuyi Zhu
    Calculus of Variations and Partial Differential Equations, 2011, 42 : 563 - 577
  • [2] Cylindrical symmetry of extremals of a Hardy-Sobolev inequality
    Mancini G.
    Sandeep K.
    Annali di Matematica Pura ed Applicata, 2004, 183 (2) : 165 - 172
  • [3] Nonexistence of Positive Solutions for an Integral Equation Related to the Hardy-Sobolev Inequality
    Li, Dongyan
    Niu, Pengcheng
    Zhuo, Ran
    ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 185 - 200
  • [4] Nonexistence of Positive Solutions for an Integral Equation Related to the Hardy-Sobolev Inequality
    Dongyan Li
    Pengcheng Niu
    Ran Zhuo
    Acta Applicandae Mathematicae, 2014, 134 : 185 - 200
  • [5] Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations
    Castorina, D.
    Fabbri, I.
    Mancini, G.
    Sandeep, K.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 1187 - 1206
  • [6] Qualitative properties of solutions for an integral system related to the Hardy-Sobolev inequality
    Villavert, John
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (05) : 1685 - 1714
  • [7] HARDY-SOBOLEV INEQUALITY
    KAVIAN, O
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (18): : 779 - 781
  • [8] Symmetry and Regularity of Solutions to the Weighted Hardy-Sobolev Type System
    Chen, Lu
    Liu, Zhao
    Lu, Guozhen
    ADVANCED NONLINEAR STUDIES, 2016, 16 (01) : 1 - 13
  • [9] On the Hardy-Sobolev equation
    Dancer, E. N.
    Gladiali, F.
    Grossi, M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 299 - 336
  • [10] Remarks on a Hardy-Sobolev inequality
    Secchi, S
    Smets, D
    Willem, M
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (10) : 811 - 815