An investigation into the deep learning approach in sentimental analysis using graph-based theories

被引:2
|
作者
Kentour, Mohamed [1 ]
Lu, Joan [1 ]
机构
[1] Univ Huddersfield, Sch Comp & Engn, Huddersfield, W Yorkshire, England
来源
PLOS ONE | 2021年 / 16卷 / 12期
关键词
NEURAL-NETWORKS; BACKPROPAGATION;
D O I
10.1371/journal.pone.0260761
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sentiment analysis is a branch of natural language analytics that aims to correlate what is expressed which comes normally within unstructured format with what is believed and learnt. Several attempts have tried to address this gap (i.e., Naive Bayes, RNN, LSTM, word embedding, etc.), even though the deep learning models achieved high performance, their generative process remains a "black-box" and not fully disclosed due to the high dimensional feature and the non-deterministic weights assignment. Meanwhile, graphs are becoming more popular when modeling complex systems while being traceable and understood. Here, we reveal that a good trade-off transparency and efficiency could be achieved with a Deep Neural Network by exploring the Credit Assignment Paths theory. To this end, we propose a novel algorithm which alleviates the features' extraction mechanism and attributes an importance level of selected neurons by applying a deterministic edge/node embeddings with attention scores on the input unit and backward path respectively. We experiment on the Twitter Health News dataset were the model has been extended to approach different approximations (tweet/aspect and tweets' source levels, frequency, polarity/subjectivity), it was also transparent and traceable. Moreover, results of comparing with four recent models on same data corpus for tweets analysis showed a rapid convergence with an overall accuracy of approximate to 83% and 94% of correctly identified true positive sentiments. Therefore, weights can be ideally assigned to specific active features by following the proposed method. As opposite to other compared works, the inferred features are conditioned through the users' preferences (i.e., frequency degree) and via the activation's derivatives (i.e., reject feature if not scored). Future direction will address the inductive aspect of graph embeddings to include dynamic graph structures and expand the model resiliency by considering other datasets like SemEval task7, covid-19 tweets, etc.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Graph-based Deep Learning Analysis and Instance Selection
    Nonaka, Keisuke
    Shekkizhar, Sarath
    Ortega, Antonio
    2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
  • [2] Graph-based rank aggregation: a deep-learning approach
    Keyhanipour, Amir Hosein
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2025, 21 (01) : 54 - 76
  • [3] Synchrophasor Recovery and Prediction: A Graph-Based Deep Learning Approach
    Yu, James J. Q.
    Hill, David J.
    Li, Victor O. K.
    Hou, Yunhe
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05) : 7348 - 7359
  • [4] Deep-learning and graph-based approach to table structure recognition
    Lee, Eunji
    Park, Jaewoo
    Koo, Hyung Il
    Cho, Nam Ik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5827 - 5848
  • [5] Deep-learning and graph-based approach to table structure recognition
    Eunji Lee
    Jaewoo Park
    Hyung Il Koo
    Nam Ik Cho
    Multimedia Tools and Applications, 2022, 81 : 5827 - 5848
  • [6] Characterizing collaborative transcription regulation with a graph-based deep learning approach
    Zhang, Zhenhao
    Feng, Fan
    Liu, Jie
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (06)
  • [7] Graph-based deep learning for graphics classification
    Riba, Pau
    Dutta, Anjan
    Llados, Josep
    Fornes, Alicia
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2017), VOL 2, 2017, : 29 - 30
  • [8] Botnet Detection Approach Using Graph-Based Machine Learning
    Alharbi, Afnan
    Alsubhi, Khalid
    IEEE ACCESS, 2021, 9 (09): : 99166 - 99180
  • [9] Hyperspectral Image Classification Using Deep Genome Graph-Based Approach
    Tinega, Haron
    Chen, Enqing
    Ma, Long
    Mariita, Richard M.
    Nyasaka, Divinah
    SENSORS, 2021, 21 (19)
  • [10] A Graph-Based Deep Reinforcement Learning Approach to Grasping Fully Occluded Objects
    Zuo, Guoyu
    Tong, Jiayuan
    Wang, Zihao
    Gong, Daoxiong
    COGNITIVE COMPUTATION, 2023, 15 (01) : 36 - 49