The partition dimension of corona product graphs

被引:0
|
作者
Rodriguez-Velazquez, Juan A. [1 ]
Yero, Ismael G. [2 ]
Kuziak, Dorota [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Ave Paisos Catalans 26, E-43007 Tarragona, Spain
[2] Univ Cadiz, Dept Matemat, Escuela Politecn Super, Ave Ramon Puyol S-N, Algeciras 11202, Spain
关键词
Resolving sets; resolving partition; metric dimension; partition dimension; corona graph; METRIC DIMENSION; RESOLVABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a set of vertices S = {v(1), v(2),..., v(k)} of a connected graph G, the metric representation of a vertex v of G with respect to S is the vector r(v vertical bar S) = (d(v, v(1)), d(v, v(2)), d(v, v(k))), where d(v, v(i)), i is an element of {1,..., k} denotes the distance between v and v(i). S is a resolving set of G if for every pair of distinct vertices u, v of G, r(u vertical bar S) not equal r(v vertical bar S). The metric dimension dim(G) of G is the minimum cardinality of any resolving set of G. Given an ordered partition Pi = {P-1, P-2,..., P-t} of vertices of a connected graph G, the partition representation of a vertex v of G, with respect to the partition Pi is the vector r(v/Pi) = (d(v, P-1), d(v, P-2),..., d(v, P-t)), where d(v, P-i), 1 <= i <= t, represents the distance between the vertex v and the set Pi, that is d(v, Pi) = min(u is an element of Pi){d(v, u)}. Pi is a resolving partition for G if for every pair of distinct vertices u, v of G, r(u vertical bar Pi) not equal r(v vertical bar Pi). The partition dimension pd(G) of G is the minimum number of sets in any resolving partition for G. Let G and H be two graphs of order n(1) and n(2) respectively. The corona product G circle dot H is defined as the graph obtained from G and H by taking one copy of G and n(1) copies of H and then joining by an edge, all the vertices from the ith-copy of H with the ith-vertex of G. Here we study the relationship between pd(G OH) and several parameters of the graphs G circle dot H, G and H, including dim(G circle dot H), pd(G) and pd(H).
引用
收藏
页码:387 / 399
页数:13
相关论文
共 50 条
  • [1] On the metric dimension of corona product graphs
    Yero, I. G.
    Kuziak, D.
    Rodriguez-Velazquez, J. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2793 - 2798
  • [2] The partition dimension of strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    Jakovac, Marko
    Kuziak, Dorota
    Taranenko, Andrej
    DISCRETE MATHEMATICS, 2014, 331 : 43 - 52
  • [3] Partition dimension of rooted product graphs
    Monica, Mohan Chris
    Santhakumar, Samivel
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 138 - 147
  • [4] On the fractional metric dimension of corona product graphs and lexicographic product graphs
    Feng, Min
    Kong, Qian
    ARS COMBINATORIA, 2018, 138 : 249 - 260
  • [5] On the Local Metric Dimension of Corona Product Graphs
    Rodriguez-Velazquez, Juan A.
    Barragan-Ramirez, Gabriel A.
    Garcia Gomez, Carlos
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S157 - S173
  • [6] The doubly metric dimension of corona product graphs
    Nie, Kairui
    Xu, Kexiang
    FILOMAT, 2023, 37 (13) : 4375 - 4386
  • [7] The Dominant Metric Dimension of Corona Product Graphs
    Adirasari, Rembulan Putri
    Suprajitno, Herry
    Susilowati, Liliek
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) : 349 - 356
  • [8] On the Local Metric Dimension of Corona Product Graphs
    Juan A. Rodríguez-Velázquez
    Gabriel A. Barragán-Ramírez
    Carlos García Gómez
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 157 - 173
  • [9] A note on the partition dimension of Cartesian product graphs
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3571 - 3574
  • [10] On the partition dimension of edge corona product of path and cycle
    Alfarisi, R.
    Dafik
    Adawiyah, R.
    Prihandini, R. M.
    Albirri, E. R.
    Agustin, I. H.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,