Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems

被引:7
|
作者
Hachez, Y [1 ]
Van Dooren, P [1 ]
机构
[1] Univ Catholique Louvain, CESAME, B-1348 Louvain, Belgium
关键词
self-adjoint quadratic eigenvalue problem; elliptic system; hyperbolic system; distance problems;
D O I
10.1016/S0024-3795(03)00489-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two important classes of quadratic eigenvalue problems are composed of elliptic and hyperbolic problems. In [Linear Algebra Appl., 351-352 (2002) 455], the distance to the nearest non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global minimization problem. This paper proposes explicit formulas to compute these distances and the optimal perturbations. The problem of computing the nearest elliptic or hyperbolic quadratic eigenvalue problem is also solved. Numerical results are given to illustrate the theory. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [1] Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems
    Higham, NJ
    Tisseur, F
    Van Dooren, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 455 - 474
  • [2] Algorithms for hyperbolic quadratic eigenvalue problems
    Guo, CH
    Lancaster, P
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1777 - 1791
  • [3] DETECTING AND SOLVING HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS
    Guo, Chun-Hua
    Higham, Nicholas J.
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1593 - 1613
  • [4] Adjoint eigenvalue correction for elliptic and hyperbolic neutron transport problems
    Merton, S. R.
    Smedley-Stevenson, R. P.
    Pain, C. C.
    Buchan, A. G.
    PROGRESS IN NUCLEAR ENERGY, 2014, 76 : 1 - 16
  • [5] QUADRATIC EIGENVALUE PROBLEMS
    EISENFELD, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 23 (01) : 58 - +
  • [6] QUADRATIC EIGENVALUE PROBLEMS
    JONES, AS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (02) : 273 - 275
  • [7] QUADRATIC EIGENVALUE PROBLEMS
    CURGUS, B
    NAJMAN, B
    MATHEMATISCHE NACHRICHTEN, 1995, 174 : 55 - 64
  • [8] Definite Quadratic Eigenvalue Problems
    Kostic, Aleksandra
    Sikalo, Sefko
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 56 - 63
  • [9] Diagonalizable quadratic eigenvalue problems
    Lancaster, Peter
    Zaballa, Ion
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) : 1134 - 1144
  • [10] On Some Quadratic Eigenvalue Problems
    Andreev, Andrey B.
    Racheva, Milena R.
    LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 455 - 462