Thermal transport size effects in silicon membranes featuring nanopillars as local resonators

被引:46
|
作者
Honarvar, Hossein [1 ]
Yang, Lina [1 ]
Hussein, Mahmoud I. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; THERMOELECTRIC-MATERIALS; CONDUCTIVITY; NANOSTRUCTURES; NANOPHONONICS; SIMULATION; REDUCTION;
D O I
10.1063/1.4954739
中图分类号
O59 [应用物理学];
学科分类号
摘要
Silicon membranes patterned by nanometer-scale pillars standing on the surface provide a practical platform for thermal conductivity reduction by resonance hybridizations. Using molecular simulations, we investigate the effects of nanopillar size, unit-cell size, and finite-structure size on the net capacity of the local resonators in reducing the thermal conductivity of the base membrane. The results indicate that the thermal conductivity reduction increases as the ratio of the volumetric size of a unit nanopillar to that of the base membrane is increased, and the intensity of this reduction varies with unit-cell size at a rate dependent on the volumetric ratio. Considering sample size, the resonance-induced thermal conductivity drop is shown to increase slightly with the number of unit cells until it would eventually level off. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Impact of nanopillars on phonon dispersion and thermal conductivity of silicon membranes
    Anufriev, Roman
    Ohori, Daisuke
    Wu, Yunhui
    Yanagisawa, Ryoto
    Jalabert, Laurent
    Samukawa, Seiji
    Nomura, Masahiro
    NANOSCALE, 2023, 15 (05) : 2248 - 2253
  • [2] Interfacial polymerization of molecular squares: Thin microporous membranes featuring size selective transport
    O'Donnell, JL
    Keefe, MH
    Hupp, JT
    POLYMER/METAL INTERFACES AND DEFECT MEDIATED PHENOMENA IN ORDERED POLYMERS, 2003, 734 : 3 - 14
  • [3] Characterization of Thermal Induced Nonlinear Effects in Silicon Microcylindrical Resonators
    Vukovic, Natasha
    Healy, Noel
    Day, Todd D.
    Horak, Peter
    Sazio, Pier J. A.
    Badding, John V.
    Peacock, Anna C.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [4] Anisotropic In-Plane Phonon Transport in Silicon Membranes Guided by Nanoscale Surface Resonators
    Neogi, Sanghamitra
    Donadio, Davide
    PHYSICAL REVIEW APPLIED, 2020, 14 (02):
  • [5] THERMAL TRANSPORT PROPERTY OF SILICON MEMBRANES WITH ASYMMETRIC POROUS STRUCTURE
    Hagino, Harutoshi
    Miyazaki, Koji
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2015, 2015,
  • [6] Kink effects on thermal transport in silicon nanowires
    Zhao, Yang
    Yang, Lin
    Liu, Chenhan
    Zhang, Qian
    Chen, Yunfei
    Yang, Juekuan
    Li, Deyu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 573 - 578
  • [7] Pore Size Control of Ultrathin Silicon Membranes by Rapid Thermal Carbonization
    Fang, David Z.
    Striemer, Christopher C.
    Gaborski, Thomas R.
    McGrath, James L.
    Fauchet, Philippe M.
    NANO LETTERS, 2010, 10 (10) : 3904 - 3908
  • [8] Tuning Thermal Transport in Ultrathin Silicon Membranes by Surface Nanoscale Engineering
    Neogi, Sanghamitra
    Sebastian Reparaz, J.
    Pereira, Luiz Felipe C.
    Graczykowski, Bartlomiej
    Wagner, Markus R.
    Sledzinska, Marianna
    Shchepetov, Andrey
    Prunnila, Mika
    Ahopelto, Jouni
    Sotomayor-Torres, Clivia M.
    Donadio, Davide
    ACS NANO, 2015, 9 (04) : 3820 - 3828
  • [9] Tuning the Anisotropic Thermal Transport in {110}-Silicon Membranes with Surface Resonances
    Li, Keqiang
    Cheng, Yajuan
    Dou, Maofeng
    Zeng, Wang
    Volz, Sebastian
    Xiong, Shiyun
    NANOMATERIALS, 2022, 12 (01)
  • [10] Low temperature thermal transport in partially perforated silicon nitride membranes
    Yefremenko, V.
    Wang, G.
    Novosad, V.
    Datesman, A.
    Pearson, J.
    Divan, R.
    Chang, C. L.
    Downes, T. P.
    McMahon, J. J.
    Bleem, L. E.
    Crites, A. T.
    Meyer, S. S.
    Carlstrom, J. E.
    APPLIED PHYSICS LETTERS, 2009, 94 (18)