Magnetoelectric effect in BaTiO3/Ni particulate nanocomposites at microwave frequencies

被引:51
|
作者
Castel, V. [1 ]
Brosseau, C. [1 ,3 ]
Ben Youssef, J. [2 ]
机构
[1] Univ Brest, Lab STICC, Univ Europeenne Bretagne, F-29238 Brest 3, France
[2] Univ Brest, Lab Magnetisme Bretagne, Univ Europeenne Bretagne, F-29238 Brest 3, France
[3] Univ Bretagne Occidentale, Dept Phys, F-29269 Brest, France
关键词
MAGNETIC-PROPERTIES; FLEXOELECTRIC POLARIZATION; RESONANCE; TITANATE; FERROELECTRICITY; MULTIFERROICS; COMPOSITES; TRANSPORT; FILMS; HETEROSTRUCTURES;
D O I
10.1063/1.3225567
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a comprehensive study of the magnetic and microwave properties of piezoelectric BaTiO3/magnetostrictive Ni nanocomposites (NCs), fabricated under uniaxial compression, at room temperature. In the current work, we investigated samples in the compositional range between 0 <= f(Ni) <= 33.5 vol % and from 0.1 to 6 GHz using broadband microwave spectroscopy in combination with atomic and magnetic force microscopy (MFM), x-ray diffraction (XRD), electron transport, and broadband (6-28 GHz) ferromagnetic resonance (FMR) experiments in the microwave regime to correlate magnetization dynamics, electromagnetic materials parameters, and microstructural information. The static magnetic response is consistent with a model of a composite medium with an unmodified Ni phase in a nonmagnetic matrix. We provide the experimental evidence for a magnetoelectric (ME) effect, i.e., the effective permittivity at microwave frequencies can be controlled by an external magnetic field, which makes these nanostructures ready for microwave tunable devices, sensors, and transducers. We show in the analysis that this magnetic field dependence is inconsistent with expectations from magnetoresistance and magnetocapacitance effects, and propose as an alternative an explanation based on the striction across the interfaces between the magnetic and piezoelectric phases. By varying the Ni content and frequency, room temperature broadband FMR was performed in order to investigate the different contributions, e. g., inhomogeneous broadening, to the effective linewidth and microwave damping. The line broadening and asymmetry of the FMR features are not intrinsic properties of the metallic nanophase but reflects the local nonmagnetic environment in which they are embedded. The increase in the effective Gilbert damping coefficient as function of the Ni content is related to the strong increase in the damping experienced by the precessing magnetization in the Ni phase. One of the characteristic features of the present results is the significant correlation between the internal field probed by FMR and the ME coupling coefficient evaluated by microwave spectroscopy which was not observed in our previous study of ZnO/Ni NCs. The present results highlight the strong influence of interfaces of the composite constituent play a crucial role in the analysis of the ME coupling. In addition MFM has been successfully used to detect the strong magnetic contrast between the phases of these nanostructures which indicates local changes in composition and structure. (C) 2009 American Institute of Physics. [doi:10.1063/1.3225567]
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spin wave dynamics in magnetoelectric Ni/BaTiO3 nanocomposites
    Lutsev, L.
    Yakovlev, S.
    Castel, V.
    Brosseau, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (32)
  • [2] Extrinsic magnetoelectric effect at the BaTiO3/Ni interface
    Li, Wente
    Lee, Jaekwang
    Demkov, Alexander A.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (05)
  • [3] Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites: Effect of compaction pressure on interfacial anisotropy
    Brosseau, C.
    Castel, V.
    Potel, M.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (02)
  • [4] Heating effect of BaTiO3 in microwave field and microstructure of BaTiO3
    李永伟
    刘韩星
    张汉林
    欧阳世翕
    Science China Mathematics, 1997, (07) : 779 - 784
  • [5] Heating effect of BaTiO3 in microwave field and microstructure of BaTiO3
    Li, YW
    Liu, HX
    Zhang, HL
    Ouyang, SX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (07): : 779 - 784
  • [6] Heating effect of BaTiO3 in microwave field and microstructure of BaTiO3
    Yongwei Li
    Hanxing Liu
    Hanlin Zhang
    Shixi Ouyang
    Science in China Series A: Mathematics, 1997, 40 : 779 - 784
  • [7] Effect of BaTiO3 on the microwave absorbing properties of Co-doped Ni-Zn ferrite nanocomposites
    Das, C.K. (chapal12@yahoo.co.in), 1600, John Wiley and Sons Inc (131):
  • [8] Effect of BaTiO3 on the Microwave Absorbing Properties of Co-Doped Ni-Zn Ferrite Nanocomposites
    Mandal, Avinandan
    Das, Chapal Kumar
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (04)
  • [9] Enhancement of the magnetoelectric effect in doped BaTiO3 nanoparticles
    Apostolov, A. T.
    Apostolova, I. N.
    Bahoosh, S. G.
    Trimper, S.
    Wesselinowa, J. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1839 - 1843
  • [10] Interfacial electronic structure and magnetoelectric effect in M/BaTiO3 (M=Ni, Fe) superlattices
    Dai, Jian-Qing
    Zhang, Hu
    Song, Yu-Min
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (22) : 3937 - 3943