artificial intelligence;
deep learning;
neural network;
embryo selection;
time-lapse;
DAY;
5;
EMBRYO;
LIVE BIRTH;
IMPLANTATION;
SELECTION;
MORPHOKINETICS;
ALGORITHMS;
CULTURE;
D O I:
10.1093/humrep/dez064
中图分类号:
R71 [妇产科学];
学科分类号:
100211 ;
摘要:
STUDY QUESTION: Can a deep learning model predict the probability of pregnancy with fetal heart (FH) from time-lapse videos? SUMMARY ANSWER: We created a deep learning model named IVY, which was an objective and fully automated system that predicts the probability of FH pregnancy directly from raw time-lapse videos without the need for any manual morphokinetic annotation or blastocyst morphology assessment. WHAT IS KNOWN ALREADY: The contribution of time-lapse imaging in effective embryo selection is promising. Existing algorithms for the analysis of time-lapse imaging are based on morphology and morphokinetic parameters that require subjective human annotation and thus have intrinsic inter-reader and intra-reader variability. Deep learning offers promise for the automation and standardization of embryo selection. STUDY DESIGN, SIZE, DURATION: A retrospective analysis of time-lapse videos and clinical outcomes of 10 638 embryos from eight different IVF clinics, across four different countries, between January 2014 and December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: The deep learning model was trained using time-lapse videos with known FH pregnancy outcome to perform a binary classification task of predicting the probability of pregnancy with FH given time-lapse video sequence. The predictive power of the model was measured using the average area under the curve (AUC) of the receiver operating characteristic curve over 5-fold stratified cross-validation. MAIN RESULTS AND THE ROLE OF CHANCE: The deep learning model was able to predict FH pregnancy from time-lapse videos with an AUC of 0.93 [95% CI 0.92-0.94] in 5-fold stratified cross-validation. A hold-out validation test across eight laboratories showed that the AUC was reproducible, ranging from 0.95 to 0.90 across different laboratories with different culture and laboratory processes. LIMITATIONS, REASONS FOR CAUTION: This study is a retrospective analysis demonstrating that the deep learning model has a high level of predictability of the likelihood that an embryo will implant. The clinical impacts of these findings are still uncertain. Further studies, including prospective randomized controlled trials, are required to evaluate the clinical significance of this deep learning model. The time-lapse videos collected for training and validation are Day 5 embryos; hence, additional adjustment would need to be made for the model to be used in the context of Day 3 transfer. WIDER IMPLICATIONS OF THE FINDINGS: The high predictive value for embryo implantation obtained by the deep learning model may improve the effectiveness of previous approaches used for time-lapse imaging in embryo selection. This may improve the prioritization of the most viable embryo for a single embryo transfer. The deep learning model may also prove to be useful in providing the optimal order for subsequent transfers of cryopreserved embryos.
机构:
Szent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, HungarySzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary
Pribenszky, Csaba
Matyas, Szabolcs
论文数: 0引用数: 0
h-index: 0
机构:
KAALI Inst Budapest, H-1125 Budapest, HungarySzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary
Matyas, Szabolcs
Kovacs, Peter
论文数: 0引用数: 0
h-index: 0
机构:
KAALI Inst Budapest, H-1125 Budapest, HungarySzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary
Kovacs, Peter
Losonczi, Eszter
论文数: 0引用数: 0
h-index: 0
机构:
ARTech Co Res & Dev, Debrecen, HungarySzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary
Losonczi, Eszter
Zadori, Janos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Ctr Assisted Reprod, Kaali Inst, H-6725 Budapest, HungarySzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary
Zadori, Janos
Vajta, Gabor
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Genom Inst Shenzhen, Shenzhen, Peoples R ChinaSzent Istvan Univ, Dept Anim Breeding & Genet, Fac Vet Sci, H-1078 Budapest, Hungary