The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation

被引:105
|
作者
Tidu, Antonin [1 ]
Janvier, Aurelie [1 ]
Schaeffer, Laure [1 ]
Sosnowski, Piotr [1 ]
Kuhn, Lauriane [2 ]
Hammann, Philippe [2 ]
Westhof, Eric [1 ]
Eriani, Gilbert [1 ]
Martin, Franck [1 ]
机构
[1] Univ Strasbourg, Inst Biol Mol & Cellulaire, Architecture & Reactivite ARN, CNRS UPR9002, F-67084 Strasbourg, France
[2] Univ Strasbourg, CNRS FRC1589, Plateforme Prote Strasbourg Esplanade, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
SARS-CoV-2; NSP1; SL1; 5'UTR; translation; ribosome; MESSENGER-RNA; I INTERFERON; GENE-EXPRESSION; INITIATION; PURIFICATION; EVASION; CELLS;
D O I
10.1261/rna.078121.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 coronavirus is responsible for the Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into nonstructural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. Despite the presence of NSP1 on the ribosome, viral translation proceeds, however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1 and we show that the evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. Only the apical part of SL1 is required for viral translation. We further show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation and fostering SARS-CoV-2 translation in the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of subgenomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine "Achilles heel" of the virus.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [1] Nsp1 of SARS-CoV-2 stimulates host translation termination
    Shuvalov, Alexey
    Shuvalova, Ekaterina
    Biziaev, Nikita
    Sokolova, Elizaveta
    Evmenov, Konstantin
    Pustogarov, Nikolay
    Arnautova, Aleksandra
    Matrosova, Vera
    Egorova, Tatiana
    Alkalaeva, Elena
    RNA BIOLOGY, 2021, 18 : 804 - 817
  • [2] Order and disorder bound together in SARS-CoV-2 Nsp1 suppress host translation
    Libich, David S.
    Baudin, Antoine
    STRUCTURE, 2023, 31 (02) : 121 - 122
  • [3] Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation
    Lapointe, Christopher P.
    Grosely, Rosslyn
    Johnson, Alex G.
    Wang, Jinfan
    Fernandez, Israel S.
    Puglisi, Joseph D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (06)
  • [4] Inhibition of translation and immune responses by the virulence factor Nsp1 of SARS-CoV-2
    Vann, Kendra R.
    Tencer, Adam H.
    Kutateladze, Tatiana G.
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)
  • [5] Inhibition of translation and immune responses by the virulence factor Nsp1 of SARS-CoV-2
    Kendra R. Vann
    Adam H. Tencer
    Tatiana G. Kutateladze
    Signal Transduction and Targeted Therapy, 5
  • [6] SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation
    Katharina Schubert
    Evangelos D. Karousis
    Ahmad Jomaa
    Alain Scaiola
    Blanca Echeverria
    Lukas-Adrian Gurzeler
    Marc Leibundgut
    Volker Thiel
    Oliver Mühlemann
    Nenad Ban
    Nature Structural & Molecular Biology, 2020, 27 : 959 - 966
  • [7] SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation
    Schubert, Katharina
    Karousis, Evangelos D.
    Jomaa, Ahmad
    Scaiola, Alain
    Echeverria, Blanca
    Gurzeler, Lukas-Adrian
    Leibundgut, Marc
    Thiel, Volker
    Muehlemann, Oliver
    Ban, Nenad
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (10) : 959 - +
  • [8] I(nsp1)ecting SARS-CoV-2–ribosome interactions
    Matthieu Simeoni
    Théo Cavinato
    Daniel Rodriguez
    David Gatfield
    Communications Biology, 4
  • [9] SARS-CoV-2 NSP1 induces mRNA cleavages on the ribosome
    Tardivat, Yann
    Sosnowski, Piotr
    Tidu, Antonin
    Westhof, Eric
    Eriani, Gilbert
    Martin, Franck
    NUCLEIC ACIDS RESEARCH, 2023, 51 (16) : 8677 - 8690
  • [10] Targeting stem-loop 1 of the SARS-CoV-2 5' UTR to suppress viral translation and Nsp1 evasion
    Vora, Setu M.
    Fontana, Pietro
    Mao, Tianyang
    Leger, Valerie
    Zhang, Ying
    Fu, Tian-Min
    Lieberman, Judy
    Gehrke, Lee
    Shi, Ming
    Wang, Longfei
    Iwasaki, Akiko
    Wu, Hao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (09)