Interactive Image Segmentation of MARS Datasets Using Bag of Features

被引:1
|
作者
Kanithi, Praveenkumar [1 ]
de Ruiter, Niels J. A. [1 ,2 ,3 ,4 ]
Amma, Maya R. [4 ]
Lindeman, Robert W. [1 ]
Butler, Anthony P. H. [1 ,2 ,4 ,5 ,6 ]
Butler, Philip H. [1 ,2 ,4 ,5 ,6 ]
Chernoglazov, Alexander I. [1 ,2 ]
Mandalika, V. B. H. [1 ,2 ]
Adebileje, Sikiru A. [1 ,4 ]
Alexander, Steven D. [2 ]
Anjomrouz, Marzieh [2 ]
Asghariomabad, Fatemeh [4 ]
Atharifard, Ali [2 ]
Atlas, James [3 ]
Bamford, Benjamin [4 ]
Bell, Stephen T. [2 ]
Bheesette, Srinidhi [4 ,6 ]
Carbonez, Pierre [4 ,6 ]
Chambers, Claire [3 ]
Clark, Jennifer A. [4 ,7 ]
Colgan, Frances [4 ]
Crighton, Jonathan S. [4 ]
Dahal, Shishir [4 ,8 ,9 ]
Damet, Jerome [4 ,6 ,10 ]
Doesburg, Robert M. N. [2 ]
Duncan, Neryda [3 ]
Ghodsian, Nooshin [3 ]
Gieseg, Steven P. [4 ,5 ,6 ]
Goulter, Brian P. [2 ]
Gurney, Sam [4 ]
Healy, Joseph L. [2 ]
Kirkbride, Tracy [7 ]
Lansley, Stuart P. [2 ,6 ]
Lowe, Chiara [4 ]
Marfo, Emmanuel [4 ]
Matanaghi, Aysouda [4 ]
Moghiseh, Mahdieh [2 ,4 ]
Palmer, David [11 ]
Panta, Raj K. [2 ,4 ]
Prebble, Hannah M. [2 ]
Raja, Aamir Y. [2 ,4 ]
Renaud, Peter [3 ,4 ,12 ]
Sayous, Yann [3 ]
Schleich, Nanette [12 ]
Searle, Emily [3 ]
Sheeja, Jereena S. [4 ]
Uddin, Rayhan [3 ]
Vanden Broeke, Lieza [2 ]
Vivek, V. S. [2 ]
Walker, E. Peter [4 ]
机构
[1] Univ Canterbury, Human Interface Technol Lab New Zealand, Christchurch 8140, New Zealand
[2] MARS Bioimaging Ltd, Christchurch 8140, New Zealand
[3] Univ Canterbury, Sch Phys & Chem Sci, Christchurch 8140, New Zealand
[4] Univ Otago Christchurch, Dept Radiol, Christchurch 8011, New Zealand
[5] Univ Canterbury, Christchurch 8140, New Zealand
[6] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[7] Ara Inst Canterbury, Christchurch 8011, New Zealand
[8] Minist Hlth, Kathmandu 44600, Nepal
[9] Natl Acad Med Sci, Kathmandu 44600, Nepal
[10] Univ Lausanne Hosp, Inst Radiat Phys, CH-1011 Lausanne, Switzerland
[11] Lincoln Univ, Dept Wine Food & Mol Biosci, Lincoln 7647, New Zealand
[12] Univ Otago, Dept Radiat Therapy, Wellington 6242, New Zealand
关键词
Bag of features; interactive image segmentation; MARS imaging; vector of locally aggregated descriptor (VLAD); PET-CT; GRADIENT;
D O I
10.1109/TRPMS.2020.3030045
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this article, we propose a slice-based interactive segmentation of spectral CT datasets using a bag of features method. The data are acquired from a MARS scanner that divides up the X-ray spectrum into multiple energy bins for imaging. In literature, most existing segmentation methods are limited to performing a specific task or tied to a particular imaging modality. Therefore, when applying generalized methods to MARS datasets, the additional energy information acquired from the scanner cannot be sufficiently utilized. We describe a new approach that circumvents this problem by effectively aggregating the data from multiple channels. Our method solves a classification problem to get the solution for segmentation. Starting with a set of labeled pixels, we partition the data using superpixels. Then, a set of local descriptors, extracted from each superpixel, are encoded into a codebook and pooled together to create a global superpixel-level descriptor (bag of features representation). We propose to use the vector of locally aggregated descriptors as our encoding/pooling strategy, as it is efficient to compute and leads to good results with simple linear classifiers. A linear support vector machine is then used to classify the superpixels into different labels. The proposed method was evaluated on multiple MARS datasets. Experimental results show that our method achieved an average of more than 10% increase in the accuracy over other state-of-the-art methods.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 50 条
  • [1] Mars image segmentation with most relevant features among wavelet and color features
    Rashno, Abdolreza
    Saraee, Mohamad
    Sadri, Saeed
    2015 AI & ROBOTICS (IRANOPEN), 2015,
  • [2] Interactive image segmentation using probabilistic hypergraphs
    Ding, Lei
    Yilmaz, Alper
    PATTERN RECOGNITION, 2010, 43 (05) : 1863 - 1873
  • [3] Interactive Image Segmentation Using Elastic Interpolation
    Meena, Sachin
    Palaniappan, Kannappan
    Seetharaman, Guna
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 307 - 310
  • [4] Image Segmentation Using Random Features
    Bull, Geoff
    Gao, Junbin
    Antolovich, Michael
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [5] Image Representation Using Bag of Perceptual Curve Features
    Etemad, Elham
    Gao, Qigang
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 396 - 403
  • [6] INTERACTIVE IMAGE SEGMENTATION
    DENISOV, DA
    KHARUK, VI
    TSIBULSKII, GM
    CHERNYAVSKII, AV
    SOVIET JOURNAL OF REMOTE SENSING, 1991, 8 (04): : 710 - 721
  • [7] Medical Image Segmentation Using Descriptive Image Features
    Yang, Meijuan
    Yuan, Yuan
    Li, Xuelong
    Yan, Pingkun
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [8] Adaptive fusion with multi-scale features for interactive image segmentation
    Ding, Zongyuan
    Wang, Tao
    Sun, Quansen
    Wang, Hongyuan
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5610 - 5621
  • [9] Adaptive fusion with multi-scale features for interactive image segmentation
    Zongyuan Ding
    Tao Wang
    Quansen Sun
    Hongyuan Wang
    Applied Intelligence, 2021, 51 : 5610 - 5621
  • [10] Interactive Image Segmentation using Particle Competition and Cooperation
    Breve, Fabricio
    Quiles, Marcos Goncalves
    Zhao, Liang
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,