Atmosphere;
Kalman filters;
Variational analysis;
Numerical weather prediction;
forecasting;
Data assimilation;
Ensembles;
VARIATIONAL DATA ASSIMILATION;
KALMAN FILTER;
HOURLY ASSIMILATION;
FORECAST CYCLE;
RAPID REFRESH;
PART I;
SYSTEM;
MODEL;
IMPLEMENTATION;
PREDICTION;
D O I:
10.1175/MWR-D-18-0145.1
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
High-resolution flow-dependent background error covariances can allow for a better usage of dense observation networks in applications of data assimilation for numerical weather prediction. The generation of high-resolution ensembles, however, can be computationally cost prohibitive. In this study, practical and low-cost ensemble generation methods are presented and compared against both global and regional ensemble Kalman filters (G-EnKF and R-EnKF, respectively). The goal is to provide limited-area deterministic assimilation schemes with higher-resolution flow-dependent background error covariances that perform at least as well as those from the G-EnKF when assimilating the same observations. The low-cost methods are based on short-range regional ensemble forecasts initialized from 1) deterministic analysis plus balanced perturbations (filter free approach) and 2) a simplified ensemble square root filter (S-EnSRF), centered on deterministic analyses. The resulting ensembles from the different approaches are used within a 4D ensemble-variational (4D-EnVar) assimilation system covering most of Canada and the northern United States. Diagnostic results show that the mean is an important component of the ensembles. Results also show that the persistence of the homogeneous characteristics of the perturbations in the filter free approach makes this method unsuited for short assimilation time windows since some error structures take longer to develop. The S-EnSRF approach overcomes this limitation by recycling part of the prior perturbations. Results from 1-month assimilation experiments show that the S-EnSRF and R-EnKF experiments provide forecasts of similar quality to those from G-EnKF. Furthermore, results from precipitation verification indicate that the R-EnKF experiment provides the best precipitation accumulation predictions over 24-h periods.
机构:
NATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Oddo, Paolo
Storto, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Euro Mediterranean Ctr Climate Change CMCC, Via Franceschini 31, I-40128 Bologna, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Storto, Andrea
Dobricic, Srdjan
论文数: 0引用数: 0
h-index: 0
机构:
European Commiss, Joint Res Ctr, Via Enrico Fermi 2749, I-21027 Ispra, VA, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Dobricic, Srdjan
Russo, Aniello
论文数: 0引用数: 0
h-index: 0
机构:
NATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Russo, Aniello
Lewis, Craig
论文数: 0引用数: 0
h-index: 0
机构:
NATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Lewis, Craig
Onken, Reiner
论文数: 0引用数: 0
h-index: 0
机构:
NATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy
Onken, Reiner
Coelho, Emanuel
论文数: 0引用数: 0
h-index: 0
机构:
NATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, ItalyNATO Sci & Technol Org, Ctr Maritime Res & Experimentat, Viale San Bartolomeo 400, I-19126 La Spezia, Italy