TWISTED EIGENVARIETIES AND SELF-DUAL REPRESENTATIONS

被引:0
|
作者
Xiang, Zhengyu [1 ,2 ]
机构
[1] SCMS, East Guanghua Main Tower,Room 2214,220 Handan Rd, Shanghai 200433, Peoples R China
[2] Fudan Univ, East Guanghua Main Tower,Room 2214,220 Handan Rd, Shanghai 200433, Peoples R China
关键词
eigenvariety; p-adic automorphic form; self-dual representation; UNITARY REPRESENTATIONS; COHOMOLOGY; SUBGROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a reductive group G and a finite order Cartan-type automorphism iota of G, we construct an eigenvariety parameterizing iota-invariant cuspidal Hecke eigensystems of G. In particular, for G = Gl(n), we prove, any self-dual cuspidal Hecke eigensystem can be deformed in a p-adic family of self-dual cuspidal Hecke eigensystems containing a Zariski dense subset of classical points.
引用
收藏
页码:2281 / 2444
页数:64
相关论文
共 50 条