Minimality of the action on the universal circle of uniform foliations

被引:4
|
作者
Fenley, Sergio R. [1 ,2 ]
Potrie, Rafael [3 ]
机构
[1] Florida State Univ, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
[2] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[3] Univ Republica, Ctr Matemat, Igua 4225 Esq Mataojo, Montevideo 11400, Uruguay
关键词
3-manifold topology; foliations; group actions; ANOSOV-FLOWS; 3-MANIFOLDS; LAMINATIONS; GEOMETRY;
D O I
10.4171/GGD/637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a uniform foliation by Gromov hyperbolic leaves on a 3-manifold, we show that the action of the fundamental group on the universal circle is minimal and transitive on pairs of different points. We also prove two other results: we prove that general uniform Reebless foliations are R-covered and we give a new description of the universal circle of R-covered foliations with Gromov hyperbolic leaves in terms of the JSJ decomposition of M.
引用
收藏
页码:1489 / 1521
页数:33
相关论文
共 50 条