Minimality of the action on the universal circle of uniform foliations
被引:4
|
作者:
Fenley, Sergio R.
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USAFlorida State Univ, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
Fenley, Sergio R.
[1
,2
]
Potrie, Rafael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Republica, Ctr Matemat, Igua 4225 Esq Mataojo, Montevideo 11400, UruguayFlorida State Univ, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
Potrie, Rafael
[3
]
机构:
[1] Florida State Univ, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
[2] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
3-manifold topology;
foliations;
group actions;
ANOSOV-FLOWS;
3-MANIFOLDS;
LAMINATIONS;
GEOMETRY;
D O I:
10.4171/GGD/637
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Given a uniform foliation by Gromov hyperbolic leaves on a 3-manifold, we show that the action of the fundamental group on the universal circle is minimal and transitive on pairs of different points. We also prove two other results: we prove that general uniform Reebless foliations are R-covered and we give a new description of the universal circle of R-covered foliations with Gromov hyperbolic leaves in terms of the JSJ decomposition of M.
机构:
Univ Santiago de Compostela, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, Spain
机构:
V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, ul. Profsoyuznaya 65, MoscowV.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, ul. Profsoyuznaya 65, Moscow