A Federated Learning Framework for Detecting False Data Injection Attacks in Solar Farms

被引:34
|
作者
Zhao, Liang [1 ]
Li, Jiaming [2 ]
Li, Qi [3 ]
Li, Fangyu [4 ,5 ]
机构
[1] Kennesaw State Univ, Dept Informat Technol, Marietta, GA 30060 USA
[2] Kennesaw State Univ, Dept Comp Sci, Marietta, GA 30060 USA
[3] Univ Georgia, Ctr Cyber Phys Syst, Athens, GA 30602 USA
[4] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ, Beijing 100124, Peoples R China
[5] Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Sensors; Data models; Training; Servers; Computational modeling; Power electronics; Data privacy; False data injection attack; federated machine learning; power electronics devices; solar inverters;
D O I
10.1109/TPEL.2021.3114671
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Smart grids face more cyber threats than before with the integration of photovoltaic (PV) systems. Data-driven-based machine learning (ML) methods have been verified to be effective in detecting attacks in power electronics devices. However, standard ML solution requires centralized data collection and processing, which is becoming infeasible in more and more applications due to efficiency issues and increasing data privacy concerns. In this letter, we propose a novel decentralized ML framework for detecting false data injection (FDI) attacks on solar PV dc/dc and dc/ac converters. The proposed paradigm incorporates the emerging technology named federated learning (FL) that enables collaboratively training across devices without sharing raw data. To the best of our knowledge, this work is the first application of FL for power electronics in the literature. Extensive experimental results demonstrate that our approach can provide efficient FDI attack detection for PV systems and is aligned with the trend of critical data privacy regulations.
引用
收藏
页码:2496 / 2501
页数:6
相关论文
共 50 条
  • [1] Privacy-preserving federated learning for detecting false data injection attacks on power system
    Lin, Wen -Ting
    Chen, Guo
    Zhou, Xiaojun
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 229
  • [2] Detection of False Data Injection Attacks in Distribution Networks: A Vertical Federated Learning Approach
    Kesici, Mert
    Pal, Bikash
    Yang, Guangya
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (06) : 5952 - 5964
  • [3] Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach
    Li, Yang
    Wei, Xinhao
    Li, Yuanzheng
    Dong, Zhaoyang
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (06) : 4862 - 4872
  • [4] Detecting Stealthy False Data Injection Attacks in Power Grids Using Deep Learning
    Ashrafuzzaman, Mohammad
    Chakhchoukh, Yacine
    Jillepalli, Ananth A.
    Tosic, Predrag T.
    de Leon, Daniel Conte
    Sheldon, Frederick T.
    Johnson, Brian K.
    2018 14TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2018, : 219 - 225
  • [5] Survey of machine learning methods for detecting false data injection attacks in power systems
    Sayghe, Ali
    Hu, Yaodan
    Zografopoulos, Ioannis
    Liu, XiaoRui
    Dutta, Raj Gautam
    Jin, Yier
    Konstantinou, Charalambos
    IET SMART GRID, 2020, 3 (05) : 581 - 595
  • [6] A Framework for Detecting False Data Injection Attacks in Large-Scale Wireless Sensor Networks
    Hu, Jiamin
    Yang, Xiaofan
    Yang, Lu-Xing
    SENSORS, 2024, 24 (05)
  • [7] Detecting False Data Injection Attacks in AC State Estimation
    Gu Chaojun
    Jirutitijaroen, Panida
    Motani, Mehul
    IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (05) : 2476 - 2483
  • [8] Detecting False Data Injection Attacks in Peer to Peer Energy Trading Using Machine Learning
    Mohammadi, Sara
    Eliassen, Frank
    Zhang, Yan
    Jacobsen, Hans-Arno
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3417 - 3431
  • [9] Detecting False Data Injection Attacks on Power Grid by Sparse Optimization
    Liu, Lanchao
    Esmalifalak, Mohammad
    Ding, Qifeng
    Emesih, Valentine A.
    Han, Zhu
    IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (02) : 612 - 621
  • [10] A Robust Learning Framework for Smart Grids in Defense Against False-Data Injection Attacks
    Miao, Zhuoyi
    Yu, Jun
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (02)