Noncrossing partitions, noncrossing graphs, and q-permanental equations

被引:2
|
作者
de Sa, Eduardo Marques [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, EC Santa Cruz, Apartado 3008, P-3001501 Coimbra, Portugal
关键词
Digraphs; Graphs; Permutations; Permanent; Polynomial identities;
D O I
10.1016/j.laa.2017.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first prove a few simple results to illustrate some algebraic combinatorial features of the q-permanent. This is followed by a characterization of a noncrossing permutation in terms of the numbers of inversions of its cycles. Then we use a family of derivative formulas for the q-permanent of a square matrix A to characterize several structures of noncrossing kind. Each such formula f characterizes a set D-f of digraphs, in the sense that D is an element of D-f if f is valid for all matrices A with digraph D. In this way we characterize, among others, digraphs with non crossing permutation subdigraphs, noncrossing graphs, non crossing forests. We use the derivative formulas to prove two particular cases of a conjecture on the q-monotonicity of the q-permanent of a Hermitian positive definite matrix. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 53
页数:18
相关论文
共 50 条
  • [1] Noncrossing trees and noncrossing graphs
    Chen, William Y. C.
    Yan, Sherry H. F.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [2] Noncrossing partitions
    Simion, R
    DISCRETE MATHEMATICS, 2000, 217 (1-3) : 367 - 409
  • [3] Pairs of noncrossing free Dyck paths and noncrossing partitions
    Chen, William Y. C.
    Pang, Sabrina X. M.
    Qu, Ellen X. Y.
    Stanley, Richard P.
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2834 - 2838
  • [4] On trees and noncrossing partitions
    Klazar, M
    DISCRETE APPLIED MATHEMATICS, 1998, 82 (1-3) : 263 - 269
  • [5] Rational associahedra and noncrossing partitions
    Armstrong, Drew
    Rhoades, Brendon
    Williams, Nathan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [6] CHAINS IN THE LATTICE OF NONCROSSING PARTITIONS
    EDELMAN, PH
    SIMION, R
    DISCRETE MATHEMATICS, 1994, 126 (1-3) : 107 - 119
  • [7] Noncrossing partitions, toggles, and homomesies
    Einstein, David
    Farber, Miriam
    Gunawan, Emily
    Joseph, Michael
    Macauley, Matthew
    Propp, James
    Rubinstein-Salzedo, Simon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [8] A note on enumeration of noncrossing partitions
    Weng, Weiming
    Liu, Bolian
    ARS COMBINATORIA, 2012, 103 : 377 - 384
  • [9] ON THE STRUCTURE OF THE LATTICE OF NONCROSSING PARTITIONS
    SIMION, R
    ULLMAN, D
    DISCRETE MATHEMATICS, 1991, 98 (03) : 193 - 206
  • [10] A group action on noncrossing partitions
    Sun, Hua
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2124 - 2126