Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra

被引:5
|
作者
Atkinson, Christopher K. [1 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
Hyperbolic geometry; Volume; Polyhedron; 3-ORBIFOLDS; TETRAHEDRA; 3-SPACE; FORMULA;
D O I
10.1007/s10711-010-9563-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a method for computing upper and lower bounds for the volume of a non-obtuse hyperbolic polyhedron in terms of the combinatorics of the 1-skeleton. We introduce an algorithm that detects the geometric decomposition of good 3-orbifolds with planar singular locus and underlying manifold S (3). The volume bounds follow from techniques related to the proof of Thurston's Orbifold Theorem, Schlafli's formula, and previous results of the author giving volume bounds for right-angled hyperbolic polyhedra.
引用
收藏
页码:177 / 211
页数:35
相关论文
共 50 条