On the generalization of the Stein-Weiss theorem for the ergodic Hilbert transform

被引:2
|
作者
Ephremidze, L [1 ]
机构
[1] A Razmadze Math Inst, GE-380093 Tbilisi, Georgia
关键词
ergodic Hilbert transform; Stein-Weiss theorem;
D O I
10.4064/sm155-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stein-Weiss theorem that the distribution function of the Hilbert transform of the characteristic function of E depends only on the measure of E is generalized to the ergodic Hilbert transform.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [1] The Stein-Weiss theorem for the ergodic Hilbert transform
    Ephremidze, L
    STUDIA MATHEMATICA, 2004, 165 (01) : 61 - 71
  • [2] The product Stein-Weiss theorem
    Sawyer, Eric T.
    Wang, Zipeng
    STUDIA MATHEMATICA, 2021, 256 (03) : 259 - 309
  • [3] On the generalization of the Riesz-Zygmund theorem for the ergodic Hilbert transform
    Ephremidze, Lasha
    Sato, Ryotaro
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 113 - 122
  • [4] Stein-Weiss operators and ellipticity
    Branson, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) : 334 - 383
  • [5] DISCRETE STEIN-WEISS INEQUALITIES
    Li, Chunhong
    Zhou, Tiantian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (28) : 1 - 18
  • [6] Variations on a theme of Boole and Stein-Weiss
    Colzani, L.
    Laeng, E.
    Monzon, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 225 - 229
  • [7] Stein-Weiss inequalities on Morrey spaces
    Salim, Daniel
    Al Hazmy, Sofihara
    Soeharyadi, Yudi
    Budhi, Wono Setya
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1929 - 1949
  • [8] Weighted inequalities and Stein-Weiss potentials
    Beckner, William
    FORUM MATHEMATICUM, 2008, 20 (04) : 587 - 606
  • [9] Stein-Weiss inequality on product spaces
    Wang, Zipeng
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1641 - 1667
  • [10] Stein-Weiss inequalities with the fractional Poisson kernel
    Chen, Lu
    Liu, Zhao
    Lu, Guozhen
    Tao, Chunxia
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (05) : 1289 - 1308