Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

被引:40
|
作者
Jang, Yongseok [1 ]
Tan, Zongqing [2 ]
Jurey, Chris [3 ]
Collins, Boyce [1 ]
Badve, Aditya [4 ]
Dong, Zhongyun [2 ]
Park, Chanhee [5 ]
Kim, Cheol Sang [5 ]
Sankar, Jagannathan [1 ]
Yun, Yeoheung [1 ]
机构
[1] N Carolina Agr & Tech State Univ, ERC RMB, Greensboro, NC 27411 USA
[2] Univ Cincinnati, Coll Med, Cincinnati, OH 45211 USA
[3] Luke Engn, Wadsworth, OH 44282 USA
[4] Univ N Carolina, Chapel Hill, NC 27514 USA
[5] Chonbuk Natl Univ, Dept Bionano Syst Engn, Jeonju 561756, Jeonbuk, South Korea
基金
美国国家科学基金会;
关键词
AZ31 magnesium alloy; Plasma electrolytic oxidation; Corrosion product; In vitro; In vivo; IN-VIVO CORROSION; SIMULATED BODY-FLUIDS; CARDIOVASCULAR STENT APPLICATION; PURE MAGNESIUM; BIOMEDICAL APPLICATIONS; BIODEGRADATION BEHAVIOR; SURFACE MODIFICATION; DEGRADATION PERFORMANCE; VITRO BIODEGRADATION; ORTHOPEDIC IMPLANTS;
D O I
10.1016/j.msec.2014.08.052
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 50 条
  • [1] Corrosion of Magnesium Alloy AZ31 Coated by Plasma Electrolytic Oxidation
    O. O. Kalinichenko
    V. O. Holovenko
    K. V. Roienko
    D. O. Misnyankin
    O. B. Girin
    L. O. Snizhko
    Surface Engineering and Applied Electrochemistry, 2019, 55 : 595 - 601
  • [2] Corrosion of Magnesium Alloy AZ31 Coated by Plasma Electrolytic Oxidation
    Kalinichenko, O. O.
    Holovenko, V. O.
    Roienko, K. V.
    Misnyankin, D. O.
    Girin, O. B.
    Snizhko, L. O.
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2019, 55 (05) : 595 - 601
  • [3] Corrosion degradation of AZ31 magnesium alloy coated by plasma electrolytic oxidation
    Kajanek, Daniel
    Hadzima, Branislav
    Buhagiar, Joseph
    Wasserbauer, Jaromir
    Jackova, Martina
    13TH INTERNATIONAL SCIENTIFIC CONFERENCE ON SUSTAINABLE, MODERN AND SAFE TRANSPORT (TRANSCOM 2019), 2019, 40 : 51 - 58
  • [4] Corrosion Characteristics of Plasma Electrolytic Oxidation Treated AZ31 Magnesium Alloy with an Increase of the Coating Thickness
    Choi, Boeun
    Chung, Wonsub
    Kim, Yonghwan
    KOREAN JOURNAL OF METALS AND MATERIALS, 2020, 58 (02): : 87 - 96
  • [5] Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy
    Chen, Dong
    Wang, Ruiqiang
    Huang, Zhiquan
    Wu, Yekang
    Zhang, Yi
    Wu, Guorui
    Li, Dalong
    Guo, Changhong
    Jiang, Guirong
    Yu, Shengxue
    Shen, Dejiu
    Nash, Philip
    APPLIED SURFACE SCIENCE, 2018, 434 : 326 - 335
  • [6] Enhanced corrosion protection of AZ31 magnesium alloy by duplex plasma electrolytic oxidation and polymer coatings
    Srinivasan, P. B.
    Scharnagl, N.
    Blawert, C.
    Dietzel, W.
    SURFACE ENGINEERING, 2010, 26 (05) : 354 - 360
  • [7] Growth and Corrosion Characteristics of Plasma Electrolytic Oxidation Ceramic Films Formed on AZ31 Magnesium Alloy
    王丽
    陈砺
    严宗诚
    王红林
    彭家志
    过程工程学报, 2009, 9 (03) : 592 - 597
  • [8] Corrosion resistance and microstructure characteristics of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy
    Wang, H. M.
    Chen, Z. H.
    Li, L. L.
    SURFACE ENGINEERING, 2010, 26 (05) : 385 - 391
  • [9] Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Maximilian Sieber
    Frank Simchen
    Ingolf Scharf
    Thomas Lampke
    Journal of Materials Engineering and Performance, 2016, 25 : 1157 - 1162
  • [10] Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Sieber, Maximilian
    Simchen, Frank
    Scharf, Ingolf
    Lampke, Thomas
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (03) : 1157 - 1162