Fundamental Performance Limits of Chaotic-Map Random Number Generators

被引:0
|
作者
Beirami, Ahmad [1 ]
Nejati, Hamid [2 ]
Callegari, Sergio [3 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Univ Bologna, I-40126 Bologna, Italy
关键词
Truly Random Number Generator (TRNG); Information Theory; Chaos; Hidden Markov Process (HMP); Metric Entropy; Lyapunov exponent;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A chaotic-map random number generator (RNG) is defined using a chaotic map and a bit-generation function. When the map function is exactly known, for a given bit-generation function, the entropy-rate of the generated output bit sequence is asymptotically the highest rate at which truly random bits can be generated from the map. The supremum of the entropy-rate amongst all bit-generation functions is called the binary metric entropy, which is the highest rate at which information can be extracted from any given map using the optimal bit-generation function. In this paper, we provide converse and achievable bounds on the binary metric entropy. The achievability is based on a sequence of universal bit-generation functions in the sense that the bit-generation function is not dependent on the specific map. The proposed sequence of bit-generation functions offers a fairly simple implementation which can easily be realized on hardware for practical purposes.
引用
收藏
页码:1126 / 1131
页数:6
相关论文
共 50 条
  • [1] A Framework for Investigating the Performance of Chaotic-Map Truly Random Number Generators
    Beirami, Ahmad
    Nejati, Hamid
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (07) : 446 - 450
  • [2] Variability Analysis of Tent Map-Based Chaotic-Map Truly Random Number Generators
    Nejati, Hamid
    Beirami, Ahmad
    Sahebi, Aria Ghassemian
    Ali, Warsame H.
    2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2013, : 157 - 160
  • [3] Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map
    Hamid Nejati
    Ahmad Beirami
    Warsame H. Ali
    Analog Integrated Circuits and Signal Processing, 2012, 73 : 363 - 374
  • [4] Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map
    Nejati, Hamid
    Beirami, Ahmad
    Ali, Warsame H.
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2012, 73 (01) : 363 - 374
  • [5] Zigzag map: a variability-aware discrete-time chaotic-map truly random number generator
    Beirami, A.
    Nejati, H.
    Ali, W. H.
    ELECTRONICS LETTERS, 2012, 48 (24) : 1537 - 1538
  • [6] RANDOM NUMBER GENERATORS ARE CHAOTIC
    HERRING, C
    PALMORE, JI
    COMMUNICATIONS OF THE ACM, 1995, 38 (01) : 121 - 122
  • [7] RANDOM NUMBER GENERATORS ARE CHAOTIC
    HERRING, C
    PALMORE, JI
    SIGPLAN NOTICES, 1989, 24 (11): : 76 - 79
  • [8] A 82nW Chaotic-Map True Random Number Generator Based on Sub-Ranging SAR ADC
    Kim, Minseo
    Ha, Unsoo
    Lee, Yongsu
    Lee, Kyuho
    Yoo, Hoi-Jun
    ESSCIRC CONFERENCE 2016, 2016, : 157 - 160
  • [9] Multiplierless chaotic Pseudo random number generators
    Rezk, Ahmed A.
    Madian, Ahmed H.
    Radwan, Ahmed G.
    Soliman, Ahmed M.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 113
  • [10] Research on the Quantifications of Chaotic Random Number Generators
    Zheng, Yanbin
    Pan, Jing
    Song, Yu
    Cheng, Hai
    Ding, Qun
    2013 INTERNATIONAL CONFERENCE ON SENSOR NETWORK SECURITY TECHNOLOGY AND PRIVACY COMMUNICATION SYSTEM (SNS & PCS), 2013, : 139 - 143