Inactivation of p21 by E1A leads to the induction of apoptosis in DNA-damaged cells

被引:43
作者
Chattopadhyay, D [1 ]
Ghosh, MK [1 ]
Mal, A [1 ]
Harter, ML [1 ]
机构
[1] Cleveland Clin Fdn, Dept Mol Biol, Lerner Res Inst, Cleveland, OH 44195 USA
关键词
D O I
10.1128/JVI.75.20.9844-9856.2001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A major impediment to successful chemotherapy is the propensity for some tumor cells to undergo cell cycle arrest rather than apoptosis. It is well established, however, that the adenovirus E1A protein can sensitize these cells to the induction of apoptosis by anticancer agents. To further understand how E1A enhances chemosensitivity, we have made use of a human colon carcinoma cell line (HCT116) which typically undergoes cell cycle arrest in response to chemotherapeutic drugs. As seen by the analysis of E1A mutants, we show here that E1A can induce apoptosis in these cells by neutralizing the activities of the cyclin-dependent kinase inhibitor p21. E1A's ability to interact with p21 and thereby restore Cdk2 activity in DNA-damaged cells correlates with the reversal of G(1) arrest, which in turn leads to apoptosis. Analysis of E1A mutants failing to bind p300 (also called CBP) or Rb shows that they are almost identical to wild-type E1A in their ability to initially overcome a G(1) arrest in cells after DNA damage, while an E1A mutant failing to bind p21 is not. However, over time, this mutant, which can still target Rb, is far more efficient in accumulating cells with a DNA content greater than 4N but is similar to wild-type E1A and the other E1A mutants in releasing cells from a p53-mediated G(2) block following chemotherapeutic treatment. Thus, we suggest that although E1A requires the binding of p21 to create an optimum environment for apoptosis to occur in DNA-damaged cells, E1A's involvement in other pathways may be contributing to this process as well. A model is proposed to explain the implications of these findings.
引用
收藏
页码:9844 / 9856
页数:13
相关论文
共 85 条
[1]   A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides [J].
Agarwal, ML ;
Agarwal, A ;
Taylor, WR ;
Chernova, O ;
Sharma, Y ;
Stark, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14775-14780
[2]   Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis [J].
Attardi, LD ;
Lowe, SW ;
Brugarolas, J ;
Jacks, T .
EMBO JOURNAL, 1996, 15 (14) :3693-3701
[3]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[4]   QUANTITATIVE-ANALYSIS OF REGIONS OF ADENOVIRUS E1A PRODUCTS INVOLVED IN INTERACTIONS WITH CELLULAR PROTEINS [J].
BARBEAU, D ;
MARCELLUS, RC ;
BACCHETTI, S ;
BAYLEY, ST ;
BRANTON, PE .
BIOCHEMISTRY AND CELL BIOLOGY, 1992, 70 (10-11) :1123-1134
[5]   Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression [J].
Bates, S ;
Ryan, KM ;
Phillips, AC ;
Vousden, KH .
ONCOGENE, 1998, 17 (13) :1691-1703
[6]   p14ARF links the tumour suppressors RB and p53 [J].
Bates, S ;
Phillips, AC ;
Clark, PA ;
Stott, F ;
Peters, G ;
Ludwig, RL ;
Vousden, KH .
NATURE, 1998, 395 (6698) :124-125
[7]   p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage [J].
Bissonnette, N ;
Hunting, DJ .
ONCOGENE, 1998, 16 (26) :3461-3469
[8]   Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after γ-irradiation [J].
Brugarolas, J ;
Moberg, K ;
Boyd, SD ;
Taya, Y ;
Jacks, T ;
Lees, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1002-1007
[9]   Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after γ-irradiation [J].
Bulavin, DV ;
Tararova, ND ;
Aksenov, ND ;
Pospelov, VA ;
Pospelova, TV .
ONCOGENE, 1999, 18 (41) :5611-5619
[10]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501