MicroSEC filters sequence errors for formalin-fixed and paraffin-embedded samples

被引:3
|
作者
Ikegami, Masachika [1 ,2 ,3 ]
Kohsaka, Shinji [1 ]
Hirose, Takeshi [1 ,4 ]
Ueno, Toshihide [1 ]
Inoue, Satoshi [1 ]
Kanomata, Naoki [5 ]
Yamauchi, Hideko [6 ]
Mori, Taisuke [7 ]
Sekine, Shigeki [7 ]
Inamoto, Yoshihiro [8 ]
Yatabe, Yasushi [7 ,9 ]
Kobayashi, Hiroshi [2 ]
Tanaka, Sakae [2 ]
Mano, Hiroyuki [1 ]
机构
[1] Natl Canc Ctr, Res Inst, Div Cellular Signaling, Tokyo, Japan
[2] Univ Tokyo, Fac Med, Dept Orthopaed Surg, Tokyo, Japan
[3] Komagome Hosp, Tokyo Metropolitan Canc & Infect Dis Ctr, Dept Musculoskeletal Oncol, Tokyo, Japan
[4] Kyushu Univ, Grad Sch Med Sci, Dept Orthopaed Surg, Fukuoka, Japan
[5] St Lukes Int Hosp, Dept Pathol, Tokyo, Japan
[6] St Lukes Int Hosp, Dept Breast Surg Oncol, Tokyo, Japan
[7] Natl Canc Ctr, Res Inst, Div Mol Pathol, Tokyo, Japan
[8] Natl Canc Ctr, Dept Hematopoiet Stem Cell Transplantat, Tokyo, Japan
[9] Natl Canc Ctr, Res Inst, Dept Biobank & Tissue Resources, Tokyo, Japan
关键词
SOMATIC MUTATION; READ ALIGNMENT; DNA; CANCER; TISSUES;
D O I
10.1038/s42003-021-02930-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The clinical sequencing of tumors is usually performed on formalin-fixed, paraffin-embedded samples and results in many sequencing errors. We identified that most of these errors are detected in chimeric reads caused by single-strand DNA molecules with microhomology. During the end-repair step of library preparation, mutations are introduced by the mis-annealing of two single-strand DNA molecules comprising homologous sequences. The mutated bases are distributed unevenly near the ends in the individual reads. Our filtering pipeline, MicroSEC, focuses on the uneven distribution of mutations in each read and removes the sequencing errors in formalin-fixed, paraffin-embedded samples without over-eliminating the mutations detected also in fresh frozen samples. Amplicon-based sequencing using 97 mutations confirmed that the sensitivity and specificity of MicroSEC were 97% (95% confidence interval: 82-100%) and 96% (95% confidence interval: 88-99%), respectively. Our pipeline will increase the reliability of the clinical sequencing and advance the cancer research using formalin-fixed, paraffin-embedded samples. Masachika Ikegami and Shinji Kohsaka et al. develop MicroSEC, a computational pipeline to filter sequencing artifacts from archival formalin-fixed and paraffin-embedded samples. Given that archival FFPE tissue is of great interest for genomic analysis, but difficult to reliably analyze, this tool may improve the ability of researchers to probe sequencing data from these samples.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] MicroSEC filters sequence errors for formalin-fixed and paraffin-embedded samples
    Masachika Ikegami
    Shinji Kohsaka
    Takeshi Hirose
    Toshihide Ueno
    Satoshi Inoue
    Naoki Kanomata
    Hideko Yamauchi
    Taisuke Mori
    Shigeki Sekine
    Yoshihiro Inamoto
    Yasushi Yatabe
    Hiroshi Kobayashi
    Sakae Tanaka
    Hiroyuki Mano
    Communications Biology, 4
  • [2] MicroSEC: Sequence error filter for formalin-fixed and paraffin-embedded samples
    Ikegami, Masachika
    Kohsaka, Shinji
    Hirose, Takeshi
    Ueno, Toshihide
    Inoue, Satoshi
    Kanomata, Naoki
    Yamauchi, Hideko
    Mori, Taisuke
    Sekine, Shigeki
    Inamoto, Yoshihiro
    Yatabe, Yasushi
    Kobayashi, Hiroshi
    Tanaka, Sakae
    Akiyama, Toru
    Okuma, Tomotake
    Mano, Hiroyuki
    CANCER RESEARCH, 2022, 82 (12)
  • [3] Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples
    Zhang, Hua
    Polavarapu, Vamsi Krishna
    Xing, Pengwei
    Zhao, Miao
    Mathot, Lucy
    Zhao, Linxuan
    Rosen, Gabriela
    Swartling, Fredrik J.
    Sjoblom, Tobias
    Chen, Xingqi
    GENOME RESEARCH, 2022, 32 (01) : 150 - 161
  • [4] Analysis of formalin-fixed paraffin-embedded (FFPE) samples.
    Stojenov, Petar
    Carter, Scott L.
    Rosshandler, Ivan Imaz
    Sivachenko, Andrey
    Guadarrama, Alberto Salido
    Vazquez, Karie
    Cordoba, Sandra Romero
    Cibulskis, Kristian
    Sougnez, Carrie
    Voet, Douglas
    Saksena, Gordon
    Lichtenstein, Lee
    Zou, Lihua
    Frazer, Scott
    Stewart, Chip
    Beroukhim, Rameen
    Meyerson, Matthew
    Lawrence, Michael S.
    Getz, Gad
    CANCER RESEARCH, 2013, 73 (08)
  • [5] Automated microRNA detection in formalin-fixed, paraffin-embedded tissue samples
    Jiang, Zeyu
    Pedata, Anne
    Shingler, Taylor
    Behman, Lauren
    Chafin, David
    Day, William
    CANCER RESEARCH, 2014, 74 (19)
  • [6] Proteomic Preparation Techniques for Formalin-Fixed Paraffin-Embedded Tissue Samples
    Lu, Ao
    Meng, Bo
    Zhao, Jia-Wei
    Liao, Huan-Yue
    Ye, Zi-Hong
    Fang, Xiang
    Zhao, Yang
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2025, 53 (01) : 84 - 93
  • [7] ValidatiValidation of a standardized extraction method for formalin-fixed paraffin-embedded tissue samples
    Lagheden, Camilla
    Eklund, Carina
    Kleppe, Sara Nordqvist
    Unger, Elizabeth R.
    Dillner, Joakim
    Sundstrom, Karin
    JOURNAL OF CLINICAL VIROLOGY, 2016, 80 : 36 - 39
  • [8] Molecular identification of fungi in formalin-fixed and paraffin-embedded skin tissue samples
    Futatsuya, Taketoshi
    Anzawa, Kazushi
    Mochizuki, Takashi
    Hatano, Yutaka
    JOURNAL OF DERMATOLOGY, 2019, 46 (02): : 171 - 172
  • [9] microRNA and protein expression in breast cancer formalin-fixed paraffin-embedded samples
    Gamez-Pozo, A.
    Sanchez-Navarro, I.
    Castaneda, C. A.
    Ferrer, N. I.
    de Velasco, G.
    Martinez, F. G.
    Ciruelos, E.
    Fresno Vara, J. A.
    BREAST CANCER RESEARCH, 2011, 13
  • [10] Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag
    Steven Henikoff
    Jorja G. Henikoff
    Kami Ahmad
    Ronald M. Paranal
    Derek H. Janssens
    Zachary R. Russell
    Frank Szulzewsky
    Sita Kugel
    Eric C. Holland
    Nature Communications, 14 (1)