Towards an optimal condition number of certain augmented Lagrangian-type saddle-point matrices

被引:5
|
作者
Estrin, R. [1 ]
Greif, C. [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, 2366 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
saddle-point matrices; condition number; singular values; eigenvalues; SCHUR COMPLEMENT; LINEAR-SYSTEMS; OSEEN PROBLEM; PRECONDITIONERS; BLOCK;
D O I
10.1002/nla.2050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an analysis for minimizing the condition number of nonsingular parameter-dependent 2 x 2 block-structured saddle-point matrices with a maximally rank-deficient (1,1) block. The matrices arise from an augmented Lagrangian approach. Using quasidirect sums, we show that a decomposition akin to simultaneous diagonalization leads to an optimization based on the extremal nonzero eigenvalues and singular values of the associated block matrices. Bounds on the condition number of the parameter-dependent matrix are obtained, and we demonstrate their tightness on some numerical examples. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:693 / 705
页数:13
相关论文
共 5 条