Piecewise linear (PL) systems provide one systematic approach to discrete-time hybrid systems. They blend switching mechanisms with classical linear components, and model arbitrary interconnections of finite automata and linear systems. Tools from automata theory, logic, and related areas of computer science and finite mathematics are used in the study of PL systems, in conjunction with linear algebra techniques, all in the context of a "PL algebra" formalism. PL systems are of interest as controllers as well as identification models. Basic questions for any class of systems are those of equivalence, and, in particular, if state spaces are equivalent under a change of variables. This paper studies this state-space equivalence problem for PL systems. The problem was known to be decidable, but its computational complexity was potentially exponential; here it is shown to be solvable in polynomial-time.