Multivariate integration of functions depending explicitly on the minimum and the maximum of the variables

被引:1
|
作者
Marichal, Jean-Luc [1 ]
机构
[1] Univ Luxembourg, Inst Math, L-1511 Luxembourg, Luxembourg
关键词
multivariate integration; Crofton formula; aggregation function; Cauchy mean; distribution function; expected value; andness; orness;
D O I
10.1016/j.jmaa.2007.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using some basic calculus of multiple integration, we provide an alternative expression of the integral integral(n)(]a,b[) f(x, min x(i), max x(i)) dx, in which the minimum and the maximum are replaced with two single variables. We demonstrate the usefulness of that expression in the computation of orness and andness average values of certain aggregation functions. By generalizing our result to Riemann-Stieltjes integrals, we also provide a method for the calculation of certain expected values and distribution functions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 210
页数:11
相关论文
共 50 条
  • [1] On the Maximum and Minimum of Multivariate Pareto Random Variables
    Woo, Jungsoo
    Nadarajah, Saralees
    INFORMATION TECHNOLOGY AND CONTROL, 2013, 42 (03): : 242 - 246
  • [2] Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity
    Li, N
    Qi, WF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2271 - 2273
  • [3] Local maximum points of explicitly quasiconvex functions
    Bagdasar, Ovidiu
    Popovici, Nicolae
    OPTIMIZATION LETTERS, 2015, 9 (04) : 769 - 777
  • [4] Local maximum points of explicitly quasiconvex functions
    Ovidiu Bagdasar
    Nicolae Popovici
    Optimization Letters, 2015, 9 : 769 - 777
  • [5] Maximum and minimum of support functions
    Han, Huhe
    HOKKAIDO MATHEMATICAL JOURNAL, 2023, 52 (03) : 381 - 399
  • [6] Universal functions for linear functions depending on two variables
    Voronenko, Andrey A.
    Okuneva, Anna S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (05): : 353 - 356
  • [7] Integration and approximation of multivariate functions
    不详
    AVERAGE-CASE ANALYSIS OF NUMERICAL PROBLEMS, 2000, 1733 : 133 - 182
  • [8] On the minimum and maximum of bivariate lognormal random variables
    Lien D.
    Extremes, 2005, 8 (1-2) : 79 - 83
  • [9] On the maximum and minimum modulus of rational functions
    Lubinsky, DS
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (04): : 815 - 832
  • [10] THE UNITARY TOTIENT MINIMUM AND MAXIMUM FUNCTIONS
    Sandor, Jozsef
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2005, 50 (02): : 91 - 100