An Alternative Description of Braided Monoidal Categories

被引:3
|
作者
Davydov, Alexei [1 ]
Runkel, Ingo [2 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
关键词
Braided monoidal category; Yang-Baxter equation; Zamolodchikov's tetrahedron equation; EQUATIONS;
D O I
10.1007/s10485-013-9338-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative presentation of braided monoidal categories. Instead of the usual associativity and braiding we have just one constraint (the b-structure). In the unital case, the coherence conditions for a b-structure are shown to be equivalent to the usual associativity, unit and braiding axioms. We also discuss the next dimensional version, that is, b-structures on bicategories. As an application, we show how special b-categories result in the Yang-Baxter equation, and how special b-bicategories produce Zamolodchikov's tetrahedron equation. Finally, we define a cohomology theory (the b-cohomology) which plays a role analogous to the one abelian group cohomology has for braided monoidal categories.
引用
收藏
页码:279 / 309
页数:31
相关论文
共 50 条
  • [1] An Alternative Description of Braided Monoidal Categories
    Alexei Davydov
    Ingo Runkel
    Applied Categorical Structures, 2015, 23 : 279 - 309
  • [2] Monoidal Categories Enriched in Braided Monoidal Categories
    Morrison, Scott
    Penneys, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (11) : 3527 - 3579
  • [3] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [4] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [5] On symbolic computations in braided monoidal categories
    Pareigis, B
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 269 - 279
  • [6] Multiplier bialgebras in braided monoidal categories
    Boehm, Gabriella
    Lack, Stephen
    JOURNAL OF ALGEBRA, 2015, 423 : 853 - 889
  • [7] A new approach to braided monoidal categories
    Zhang, Tao
    Wang, Shuanhong
    Wang, Dingguo
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [8] Symmetric centres of braided monoidal categories
    Cai, CR
    Jiang, BX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (04): : 384 - 390
  • [9] Symmetric centres of braided monoidal categories
    蔡传仁
    江宝歆
    Science China Mathematics, 2000, (04) : 384 - 390
  • [10] Symmetric centres of braided monoidal categories
    Chuanren Cai
    Baoxin Jiang
    Science in China Series A: Mathematics, 2000, 43 : 384 - 390