Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks

被引:169
|
作者
Ledoit, Olivier [1 ]
Wolf, Michael [2 ]
机构
[1] Univ Zurich, AlphaCrest Capital Management, Zurich, Switzerland
[2] Univ Zurich, Zurich, Switzerland
来源
REVIEW OF FINANCIAL STUDIES | 2017年 / 30卷 / 12期
关键词
CROSS-SECTION; NAIVE DIVERSIFICATION; RETURNS; OPTIMIZATION; EIGENVALUES; PERFORMANCE;
D O I
10.1093/rfs/hhx052
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (i.e., the Goldilocks principle). This number is the same as the number of assets. Our nonlinear shrinkage estimator is asymptotically optimal for portfolio selection when the number of assets is of the same magnitude as the sample size. In backtests with historical stock return data, it performs better than previous proposals and, in particular, it dominates linear shrinkage.
引用
收藏
页码:4349 / 4388
页数:40
相关论文
共 50 条
  • [1] Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks (vol 30, pg 4349, 2017)
    Ledoit, Olivier
    Wolf, Michael
    REVIEW OF FINANCIAL STUDIES, 2018, 31 (04): : 1604 - 1604
  • [2] Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix
    Ismail, Amine
    Pham, Huyen
    MATHEMATICAL FINANCE, 2019, 29 (01) : 174 - 207
  • [3] PORTFOLIO SELECTION WITH CONDITIONAL COVARIANCE MATRIX AND NONLINEAR PROGRAMMING
    Martinez Sanchez, Julio Cesar
    Sotres-Ramos, David
    Ramirez Guzman, Martha Elva
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (05) : 343 - 355
  • [4] Voting shrinkage algorithm for Covariance Matrix Estimation and its application to portfolio selection
    Tuan Tran
    Nhat Nguyen
    Trung Nguyen
    An Mai
    2020 RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES (RIVF 2020), 2020, : 172 - 177
  • [5] PORTFOLIO SELECTION - MARKOWITZ,HM
    ROY, AD
    ECONOMETRICA, 1961, 29 (01) : 99 - 100
  • [6] PORTFOLIO SELECTION - MARKOWITZ,HM
    ALLEN, RGD
    ECONOMICA, 1960, 27 (106) : 189 - 190
  • [7] A Stein-type shrinkage estimator of the covariance matrix for portfolio selections
    Ruili Sun
    Tiefeng Ma
    Shuangzhe Liu
    Metrika, 2018, 81 : 931 - 952
  • [8] A Stein-type shrinkage estimator of the covariance matrix for portfolio selections
    Sun, Ruili
    Ma, Tiefeng
    Liu, Shuangzhe
    METRIKA, 2018, 81 (08) : 931 - 952
  • [9] Portfolio Selection with a Rank-Deficient Covariance Matrix
    Gulliksson, Marten
    Oleynik, Anna
    Mazur, Stepan
    COMPUTATIONAL ECONOMICS, 2024, 63 (06) : 2247 - 2269
  • [10] High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators
    Choi, Young-Geun
    Lim, Johan
    Choi, Sujung
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (07) : 1278 - 1300