Convex analysis of invariant sets for a class of nonlinear systems

被引:1
|
作者
Hu, TS [1 ]
Lin, ZL [1 ]
机构
[1] Univ Virginia, Charles L Brown Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
convexity; invariant set; contractive invariance; Lyapunov stability;
D O I
10.1016/j.sysconle.2004.11.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the invariance of the convex hull of an invariant set for a class of nonlinear systems satisfying a generalized sector condition. The generalized sector is bounded by two odd symmetric functions which are convex/concave in the right-half plane. In a recent paper, we showed that, for this class of systems, the convex hull of a group of invariant ellipsoids is invariant. This paper shows that the convex hull of a general invariant set need not be invariant, and that the convex hull of a contractively invariant set is, however, invariant. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:729 / 737
页数:9
相关论文
共 50 条
  • [1] Convex analysis of invariant sets for a class of nonlinear systems
    Hu, TS
    Lin, ZL
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 435 - 440
  • [2] On the computation of convex robust control invariant sets for nonlinear systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    AUTOMATICA, 2010, 46 (08) : 1334 - 1338
  • [3] Invariant sets for a class of nonlinear control systems tractable by symbolic computation
    Harms, Melanie
    Schilli, Christian
    Zerz, Eva
    IFAC PAPERSONLINE, 2023, 56 (02): : 3899 - 3903
  • [4] Multiple steady-state solutions of nonlinear parabolic systems in convex invariant sets
    Ruan, W.H.
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 26 (10): : 1643 - 1654
  • [5] Multiple steady-state solutions of nonlinear parabolic systems in convex invariant sets
    Ruan, WH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (10) : 1643 - 1654
  • [6] Invariant sets for a class of hybrid systems
    Jirstrand, M
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3699 - 3704
  • [7] Invariant sets computation for convex difference inclusions systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    SYSTEMS & CONTROL LETTERS, 2012, 61 (08) : 819 - 826
  • [8] OVERLAPPING WITH CONVEX SETS AND NONLINEAR EQUATION SYSTEMS
    WILLE, F
    COMMENTARII MATHEMATICI HELVETICI, 1972, 47 (03) : 273 - 288
  • [9] Invariant sets for the nonlinear impulsive control systems
    O. N. Samsonyuk
    Automation and Remote Control, 2015, 76 : 405 - 418
  • [10] On the computation of local invariant sets for nonlinear systems
    Fiacchini, M.
    Alamo, T.
    Camacho, E. F.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5781 - 5786