Profinite surface groups and the congruence kernel of arithmetic lattices in SL2(R)

被引:8
|
作者
Zalesskii, PA [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
D O I
10.1007/BF02773529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a proper, nonsingular, connected algebraic curve of genus g over the field C of complex numbers. The algebraic fundamental group Gamma = pi(1)(X) in the sense of [SGA-1] (1971) is the profinite completion of the fundamental group pi(top)(1)(X) of a compact oriented 2-manifold. We prove that every projective normal (respectively, characteristic, accessible) subgroup of Gamma is isomorphic to a normal (respectively, characteristic, accessible) subgroup of a free profinite group. We use this description to give a complete solution of the congruence subgroup problem for arithmetic lattices in SL2(R).
引用
收藏
页码:111 / 123
页数:13
相关论文
共 50 条