Benders decomposition for the mixed no-idle permutation flowshop scheduling problem

被引:10
|
作者
Bektas, Tolga [1 ]
Hamzadayi, Alper [2 ]
Ruiz, Ruben [3 ]
机构
[1] Univ Liverpool, Management Sch, Liverpool L69 7ZH, Merseyside, England
[2] Van Yuzuncu Yil Univ, Dept Ind Engn, TR-65080 Van, Turkey
[3] Univ Politecn Valencia, Grp Sistemas Optimizac Aplicada, Inst Tecnol Informat, Ciudad Politecn Innovac, Edifico 8G,Camino Vera S-N, Valencia 46021, Spain
关键词
Flowshop scheduling; Mixed no-idle; Benders decomposition; Referenced local search; DIFFERENTIAL EVOLUTION ALGORITHM; MAKESPAN; MINIMIZE; MODEL;
D O I
10.1007/s10951-020-00637-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mixed no-idle flowshop scheduling problem arises in modern industries including integrated circuits, ceramic frit and steel production, among others, and where some machines are not allowed to remain idle between jobs. This paper describes an exact algorithm that uses Benders decomposition with a simple yet effective enhancement mechanism that entails the generation of additional cuts by using a referenced local search to help speed up convergence. Using only a single additional optimality cut at each iteration, and combined with combinatorial cuts, the algorithm can optimally solve instances with up to 500 jobs and 15 machines that are otherwise not within the reach of off-the-shelf optimization software, and can easily surpass ad-hoc existing metaheuristics. To the best of the authors' knowledge, the algorithm described here is the only exact method for solving the mixed no-idle permutation flowshop scheduling problem.
引用
收藏
页码:513 / 523
页数:11
相关论文
共 50 条
  • [1] Benders decomposition for the mixed no-idle permutation flowshop scheduling problem
    Tolga Bektaş
    Alper Hamzadayı
    Rubén Ruiz
    Journal of Scheduling, 2020, 23 : 513 - 523
  • [2] An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem
    Pan, Quan-Ke
    Ruiz, Ruben
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2014, 44 : 41 - 50
  • [3] The distributed no-idle permutation flowshop scheduling problem with due windows
    Mousighichi, Kasra
    Avci, Mualla Gonca
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [4] A General Variable Neighborhood Search Algorithm for the No-Idle Permutation Flowshop Scheduling Problem
    Tasgetiren, M. Fatih
    Buyukdagli, Ozge
    Pan, Quan-Ke
    Suganthan, Ponnuthurai Nagaratnam
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I (SEMCCO 2013), 2013, 8297 : 24 - +
  • [5] A Q-Learning Evolutionary Algorithm for Solving the Distributed Mixed No-Idle Permutation Flowshop Scheduling Problem
    Zeng, Fangchi
    Cui, Junjia
    SYMMETRY-BASEL, 2025, 17 (02):
  • [6] An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems
    Li, Yuan-Zhen
    Pan, Quan-Ke
    Li, Jun-Qing
    Gao, Liang
    Tasgetiren, M. Fatih
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 63
  • [7] No-wait or no-idle permutation flowshop scheduling with dominating machines
    Wang J.-B.
    Xia Z.-Q.
    Journal of Applied Mathematics and Computing, 2005, 17 (1-2) : 419 - 432
  • [8] A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem
    Tasgetiren, M. Fatih
    Pan, Quan-Ke
    Suganthan, P. N.
    Buyukdagli, Ozge
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (07) : 1729 - 1743
  • [9] A Two-stage Memetic Algorithm for Distributed No-idle Permutation Flowshop Scheduling Problem
    Chen Jing-fang
    Wang Ling
    Wang Jing-jing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2278 - 2283
  • [10] A referenced iterated greedy algorithm for the distributed assembly mixed no-idle permutation flowshop scheduling problem with the total tardiness criterion
    Li, Yuan-Zhen
    Pan, Quan-Ke
    Ruiz, Ruben
    Sang, Hong-Yan
    KNOWLEDGE-BASED SYSTEMS, 2022, 239