Cosmic evolution of star-forming galaxies to z ≃ 1.8 in the faint low-frequency radio source population

被引:24
|
作者
Ocran, E. F. [1 ,2 ,3 ]
Taylor, A. R. [1 ,2 ,3 ]
Vaccari, M. [2 ,3 ,4 ]
Ishwara-Chandra, C. H. [3 ,5 ]
Prandoni, I [4 ]
Prescott, M. [2 ,3 ]
Mancuso, C. [4 ]
机构
[1] Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa
[2] Univ Western Cape, Dept Phys & Astron, Private Bag X17, ZA-7535 Bellville, South Africa
[3] Inter Univ, Inst Data Intens Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa
[4] Ist Radioastron, INAF, Via Gobetti 101, I-40129 Bologna, Italy
[5] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
galaxies: luminosity function; galaxies: starburst; large-scale structure of Universe; radio continuum: galaxies; ACTIVE GALACTIC NUCLEI; LUMINOSITY FUNCTION; COSMOLOGICAL EVOLUTION; FORMATION HISTORY; FIELD; AGN; SKY; STELLAR; CONTINUUM; EMISSION;
D O I
10.1093/mnras/stz3401
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the properties of star-forming galaxies selected at 610 MHz with the GMRT in a survey covering similar to 1.86 deg(2) down to a noise of similar to 7.1 mu Jy beam(-1). These were identified by combining multiple classification diagnostics: optical, X-ray, infrared, and radio data. Of the 1685 SFGs from the GMRT sample, 496 have spectroscopic redshifts whereas 1189 have photometric redshifts. We find that the IRRC of star-forming galaxies, quantified by the infrared-to-1.4 GHz radio luminosity ratio qIR, decreases with increasing redshift: q(IR) = 2.86 +/- 0.04(1 + z)(-0.20 +/- 0.02) out to z similar to 1.8. We use the V/V-max statistic to quantify the evolution of the comoving space density of the SFG sample. Averaged over luminosity our results indicate < V/V-max > to be 0.51 +/- 0.06, which is consistent with no evolution in overall space density. However, we find V/V-max to be a function of radio luminosity, indicating strong luminosity evolution with redshift. We explore the evolution of the SFGs radio luminosity function by separating the source into five redshift bins and comparing to theoretical model predictions. We find a strong redshift trend that can be fittedwith a pure luminosity evolution of the form L-610MHz alpha ( 1 + z)((2.95 +/- 0.19)-(0.50 +/- 0.15)z). We calculate the cosmic SFR density since z similar to 1.5 by integrating the parametric fits of the evolved 610MHz luminosity function. Our sample reproduces the expected steep decline in the star formation rate density since z similar to 1.
引用
收藏
页码:5911 / 5924
页数:14
相关论文
共 50 条
  • [1] The nature of the faint low-frequency radio source population
    Ocran, E. F.
    Taylor, A. R.
    Vaccari, M.
    Green, D. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (01) : 1156 - 1168
  • [2] The contribution of star-forming galaxies to the cosmic radio background
    Ponente, P. P.
    Ascasibar, Y.
    Diego, J. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (01) : 691 - 695
  • [3] Low-frequency turnover star-forming galaxies I: Radio continuum observations and global properties
    Grundy, Joe Arthur
    Seymour, Nicholas
    Wong, O. Ivy
    Lee-Waddell, Karen
    Galvin, Timothy James
    Cluver, Michelle
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2025, 42
  • [4] The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure
    Jiang, Dongfei
    Liu, F. S.
    Zheng, Xianzhong
    Yesuf, Hassen M.
    Koo, David C.
    Faber, S. M.
    Guo, Yicheng
    Koekemoer, Anton M.
    Wang, Weichen
    Fang, Jerome J.
    Barro, Guillermo
    Jia, Meng
    Tong, Wei
    Liu, Lu
    Meng, Xianmin
    Kocevski, Dale
    McGrath, Elizabeth J.
    Hathi, Nimish P.
    ASTROPHYSICAL JOURNAL, 2018, 854 (01):
  • [5] A Radio View of the Sky: the Cosmic History of Star-Forming and AGN Galaxies
    Smolcic, V.
    Zamorani, G.
    Schinnerer, E.
    STARBURST-AGN CONNECTION, 2009, 408 : 116 - +
  • [6] Discovery of a population of star-forming galaxies at redshift z≳3
    Adelberger, KL
    Steidel, CC
    YOUNG GALAXIES AND QSO ABSORPTION-LINE SYSTEMS, 1997, 114 : 47 - 50
  • [7] Clustering of star-forming galaxies near a radio galaxy at z=5.2
    Overzier, RA
    Miley, GK
    Bouwens, RJ
    Cross, NJG
    Zirm, AW
    Benítez, N
    Blakeslee, JP
    Clampin, M
    Demarco, R
    Ford, HC
    Hartig, GF
    Illingworth, GD
    Martel, AR
    Röttgering, HJA
    Venemans, B
    Ardila, DR
    Bartko, F
    Bradley, LD
    Broadhurst, TJ
    Coe, D
    Feldman, PD
    Franx, M
    Golimowski, DA
    Goto, T
    Gronwall, C
    Holden, B
    Homeier, N
    Infante, L
    Kimble, RA
    Krist, JE
    Mei, S
    Menanteau, F
    Meurer, GR
    Motta, V
    Postman, M
    Rosati, P
    Sirianni, M
    Sparks, WB
    Tran, HD
    Tsvetanov, ZI
    White, RL
    Zheng, W
    ASTROPHYSICAL JOURNAL, 2006, 637 (01): : 58 - 73
  • [8] Microwave and radio emission of dusty star-forming galaxies: implication for the cosmic radio background
    Ysard, N.
    Lagache, G.
    ASTRONOMY & ASTROPHYSICS, 2012, 547
  • [9] The evolution of gas-phase metallicity and resolved abundances in star-forming galaxies at z ≈ 0.6-1.8
    Gillman, S.
    Tiley, A. L.
    Swinbank, A. M.
    Dudzeviciute, U.
    Sharples, R. M.
    Smail, Ian
    Harrison, C. M.
    Bunker, Andrew J.
    Bureau, Martin
    Cirasuolo, M.
    Magdis, Georgios E.
    Mendel, Trevor
    Stott, John P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (03) : 4229 - 4247
  • [10] Radio continuum size evolution of star-forming galaxies over 0.35 &lt; z &lt; 2.25
    Jimenez-Andrade, E. F.
    Magnelli, B.
    Karim, A.
    Zamorani, G.
    Bondi, M.
    Schinnerer, E.
    Sargent, M.
    Romano-Diaz, E.
    Novak, M.
    Lang, P.
    Bertoldi, F.
    Vardoulaki, E.
    Toft, S.
    Smolcic, V.
    Harrington, K.
    Leslie, S.
    Delhaize, J.
    Liu, D.
    Karoumpis, C.
    Kartaltepe, J.
    Koekemoer, A. M.
    ASTRONOMY & ASTROPHYSICS, 2019, 625