Monotonicity of the zeros of orthogonal polynomials through related measures

被引:0
|
作者
da Silva, AP
Ranga, AS
Vazquez, TG
机构
[1] Univ Estadual Paulista, IBILCE, DCCE, UNESP, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Sao Paulo, ICMC, SCE, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
orthogonal polynomials; related measures; three term recurrence relations;
D O I
10.1016/j.jmaa.2005.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relation between two sequences of orthogonal polynomials, where the associated measures are related to each other by a first degree polynomial multiplication (or division), is well known. We use this relation to study the monotonicity properties of the zeros of generalized orthogonal polynomials. As examples, the Jacobi, Laguerre and Charlier polynomials are considered. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:699 / 709
页数:11
相关论文
共 50 条
  • [1] A DISCRETE APPROACH TO MONOTONICITY OF ZEROS OF ORTHOGONAL POLYNOMIALS
    ISMAIL, MEH
    MULDOON, ME
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (01) : 65 - 78
  • [2] A Short Note on Interlacing and Monotonicity of Zeros of Orthogonal Polynomials
    Castillo, K.
    Rafaeli, F. R.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [3] Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials
    Dimitrov, Dimitar K.
    Marcellan, Francisco
    Rafaeli, Fernando R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 80 - 89
  • [5] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [6] Monotonicity of zeros of polynomials orthogonal with respect to an even weight function
    Jordaan, K.
    Wang, H.
    Zhou, J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (09) : 721 - 729
  • [7] Applications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems
    Erb, Wolfgang
    Tookos, Ferenc
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4771 - 4780
  • [8] Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
    Castillo, Kenier
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (11) : 1663 - 1671
  • [9] Zeros of orthogonal polynomials generated by canonical perturbations of measures
    Huertas, Edmundo J.
    Marcellan, Francisco
    Rafaeli, Fernando R.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7109 - 7127
  • [10] Zeros of Orthogonal Polynomials Generated by the Geronimus Perturbation of Measures
    Branquinho, Amilcar
    Huertas, Edmundo J.
    Rafaeli, Fernando R.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 44 - 59