Stability Analysis of the Walking Robots Motion

被引:8
|
作者
Migdalovici, Marcel [1 ]
Vladareanu, Luige [1 ]
Baran, Daniela [2 ]
Vladeanu, Gabriela [1 ]
Radulescu, Mihai [1 ]
机构
[1] Romanian Acad, Inst Solid Mech, Bucharest 1, Romania
[2] Natl Inst Aerosp Res Elie Carafoli, Bucharest, Romania
关键词
dynamic systems; walking robot motion; robot stability; separation of stable zones; chaos; CONVERGENCE; ALGORITHM; QR;
D O I
10.1016/j.procs.2015.09.117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The theme of walking robots stability is analyzed in the paper as a particular case of stability for dynamic systems that depend on parameters, deduced, in the mathematical model, by specifying the parameters, not specified numerically, that define the dynamic system. Another aspect of the walking robots' stability assurance is the necessity of sequentially using parameter time, in evolving a dynamic system that permits the local constant selection of the dynamic system's remaining parameters, assuring its stable evolution. In opposition is the stability of rocket flight, which presupposes asymptotic stability. The optimization of the walking robot's dynamic system evolution is possible by identifying the mathematical conditions of separation between the stable and unstable zone in the range of free parameters, inspired from the mathematical conditions already analysed by us for the general case of the dynamic systems, in some of our previous papers. The theoretical considerations are exemplified on walking robot's mathematical model. The possible chaotic evolution of the dynamic systems, with possible application on walking robots evolution is also analysed. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [1] DYNAMIC MODELING, STABILITY AND ENERGY CONSUMPTION ANALYSIS OF TURNING MOTION OF REALISTIC HEXAPOD WALKING ROBOTS
    Roy, Shibendu Shekhar
    Pratihar, Dilip Kumar
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE - 2011, VOL 6, PTS A AND B, 2012, : 729 - +
  • [2] THEORETICAL STUDY ON WALKING ROBOTS STABILITY
    Migdalovici, Marcel
    Vladareanu, Luige
    Vladeanu, Gabriela
    Baran, Daniela
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [3] A classification of stability margins for walking robots
    Garcia, E
    Estremera, J
    De Santos, PG
    CLIMBING AND WALKING ROBOTS, 2002, : 799 - 808
  • [4] DYNAMIC STABILITY IMPROVEMENT OF WALKING ROBOTS
    Vladareanu, Luige
    Ion, Ion
    Curaj, Adrian
    Dumitru, Stefan A.
    FIELD ROBOTICS, 2012, : 742 - +
  • [5] Motion planning of walking robots in environments with uncertainty
    Chen, CH
    Kumar, V
    1996 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, PROCEEDINGS, VOLS 1-4, 1996, : 3277 - 3282
  • [6] Motion planning of walking robots in environments with uncertainty
    Chen, CH
    Kumar, V
    Luo, YC
    JOURNAL OF ROBOTIC SYSTEMS, 1999, 16 (10): : 527 - 545
  • [7] Robust motion control of biped walking robots
    Zaher, Ashraf A.
    Zohdy, Mohammed A.
    WSEAS Transactions on Systems and Control, 2009, 4 (12): : 613 - 624
  • [8] Stability analysis for passive robots walking on inclined surfaces with local angles
    Zhou, Yining
    Sun, Zhongkui
    Zhao, Nannan
    Xu, Wei
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [9] An Approach to Evaluate the Dynamic Stability for Walking Robots
    Fu, Jianxun
    Liu, Chengze
    Li, Zhijun
    Gao, Feng
    2022 6TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS 2022), 2022, : 114 - 118
  • [10] Motion planning for walking pattern generation of humanoid robots
    Harada, Kensuke
    Hattori, Shizuko
    Hirukawa, Hirohisa
    Morisawa, Mitsuharu
    Kajita, Shuuji
    Yoshida, Eiichi
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 4233 - 4239