A new method for a class of nonlinear set-valued variational inequalities

被引:0
|
作者
Huang, NJ [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
来源
关键词
variational inequality; set-valued mapping; iterative algorithm; convergence;
D O I
10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a new iterative algorithm for solving a new class of nonlinear variational inequalities with set-valued mapping, and give some convergence analysis of iterative sequences generated by the algorithm.
引用
收藏
页码:427 / 430
页数:4
相关论文
共 50 条
  • [1] Stability of new implicit iteration procedures for a class of nonlinear set-valued mixed variational inequalities
    Fang, YP
    Deng, CX
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (01): : 53 - 59
  • [2] The Tikhonov Regularization Method for Set-Valued Variational Inequalities
    He, Yiran
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] The generalized set-valued strongly nonlinear implicit variational inequalities
    Huang, NJ
    Liu, YP
    Tang, YY
    Bai, MR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (10) : 29 - 36
  • [4] Generalized set-valued mixed nonlinear quasi variational inequalities
    Department of Mathematics College of Science, King Saud University, Riyadh
    11451, Saudi Arabia
    J. Appl. Math. Comp., 1 (73-89):
  • [5] Generalized set-valued mixed nonlinear quasi variational inequalities
    Muhammad Aslam Noor
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (1): : 73 - 89
  • [6] Generalized set-valued strongly nonlinear implicit variational inequalities
    Huang, Nan-Jing
    Liu, Ya-Ping
    Tang, Ya-Yong
    Bai, Min-Ru
    Computers and Mathematics with Applications, 1999, 37 (10): : 29 - 36
  • [7] An iterative method for generalized set-valued nonlinear mixed quasi-variational inequalities
    Al-Shemas, E
    Billups, SC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 170 (02) : 423 - 432
  • [8] Iterative algorithms for a new class of extended general nonconvex set-valued variational inequalities
    Alimohammady, M.
    Balooee, J.
    Cho, Y. J.
    Roohi, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) : 3907 - 3923
  • [9] MINTY VARIATIONAL PRINCIPLE FOR SET-VALUED VARIATIONAL INEQUALITIES
    Crespi, Giovanni P.
    Ginchev, Ivan
    Rocca, Matteo
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (01): : 39 - 56
  • [10] Generalized set-valued strongly nonlinear variational inequalities in Banach spaces
    Cho, YJ
    Fang, YP
    Huang, NJ
    Kim, KH
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (02) : 195 - 205