Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras

被引:77
|
作者
Yu, Houyi [1 ]
Guo, Li [2 ,3 ]
Thibon, Jean-Yves [4 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Univ Paris Est Marne Vallee, Lab Informat Gaspard Monge, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, France
基金
中国国家自然科学基金;
关键词
Symmetric functions; Quasi-symmetric functions; Weak compositions; Rota-Baxter algebras; Hopf algebras; RENORMALIZATION;
D O I
10.1016/j.aim.2018.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the Hopf algebra of quasi-symmetric functions with semigroup exponents generalizing the Hopf algebra QSym of quasi-symmetric functions. As a special case we obtain the Hopf algebra QSym((N) over tilde) of weak quasi-symmetric functions, which provides a framework for the study of a question proposed by G.-C. Rota relating symmetric type functions and Rota-Baxter algebras. We provide the transformation formulas between the weak monomial and fundamental quasi-symmetric functions, which extends the corresponding results for quasi-symmetric functions. Moreover, we show that QSym is a Hopf subalgebra and a Hopf quotient algebra of QSym((N) over tilde). Rota's question is addressed by identifying QSym((N) over tilde) with the free commutative unitary Rota-Baxter algebra III (x) of weight 1 on one generator x, which also allows us to equip III(x) with a Hopf algebra structure. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Rota-Baxter algebras and left weak composition quasi-symmetric functions
    Yu, Houyi
    Guo, Li
    Zhao, Jianqiang
    RAMANUJAN JOURNAL, 2017, 44 (03): : 567 - 596
  • [2] Rota–Baxter algebras and left weak composition quasi-symmetric functions
    Houyi Yu
    Li Guo
    Jianqiang Zhao
    The Ramanujan Journal, 2017, 44 : 567 - 596
  • [3] Rota-Baxter Operators on Cocommutative Weak Hopf Algebras
    Wang, Zhongwei
    Guan, Zhen
    Zhang, Yi
    Zhang, Liangyun
    MATHEMATICS, 2022, 10 (01)
  • [4] FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS
    Zhang, Xigou
    Gao, Xing
    Guo, Li
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 12 - 34
  • [5] Rota-Baxter (Co)algebra Equation Systems and Rota-Baxter Hopf Algebras
    Gu, Yue
    Wang, Shuanhong
    Ma, Tianshui
    MATHEMATICS, 2022, 10 (03)
  • [6] Construction of Rota-Baxter algebras via Hopf module algebras
    Jian RunQiang
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2321 - 2328
  • [7] Construction of Rota-Baxter algebras via Hopf module algebras
    RunQiang Jian
    Science China Mathematics, 2014, 57 : 2321 - 2328
  • [8] Modified Rota-Baxter Algebras, Shuffle Products and Hopf Algebras
    Zhang, Xigou
    Gao, Xing
    Guo, Li
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3047 - 3072
  • [9] Construction of Rota-Baxter algebras via Hopf module algebras
    JIAN RunQiang
    Science China(Mathematics), 2014, 57 (11) : 2321 - 2328
  • [10] Rota-Baxter operators on cocommutative Hopf algebras
    Goncharov, Maxim
    JOURNAL OF ALGEBRA, 2021, 582 : 39 - 56