Nonlinear Dose-Response Modeling of High-Throughput Screening Data Using an Evolutionary Algorithm
被引:4
|
作者:
Ma, Jun
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Bioinformat Res Ctr, Durham, NC USA
Natl Inst Environm Hlth Sci, Biostat & Computat Biol Branch, Durham, NC 27709 USANorth Carolina State Univ, Bioinformat Res Ctr, Durham, NC USA
Ma, Jun
[1
,2
]
Bair, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Sciome LLC, Durham, NC USANorth Carolina State Univ, Bioinformat Res Ctr, Durham, NC USA
Bair, Eric
[3
]
Motsinger-Reif, Alison
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Environm Hlth Sci, Biostat & Computat Biol Branch, Durham, NC 27709 USANorth Carolina State Univ, Bioinformat Res Ctr, Durham, NC USA
Motsinger-Reif, Alison
[2
]
机构:
[1] North Carolina State Univ, Bioinformat Res Ctr, Durham, NC USA
Nonlinear dose-response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected by varying levels of biological, chemical, or radiation stress. Modeling such responses is a crucial component of toxicity testing and chemical screening. Traditional model fitting methods such as nonlinear least squares (NLS) are very sensitive to initial parameter values and often had convergence failure. The use of evolutionary algorithms (EAs) has been proposed to address many of the limitations of traditional approaches, but previous methods have been limited in the types of models they can fit. Therefore, we propose the use of an EA for dose-response modeling for a range of potential response model functional forms. This new method can not only fit the most commonly used nonlinear dose-response models (eg, exponential models and 3-, 4-, and 5-parameter logistic models) but also select the best model if no model assumption is made, which is especially useful in the case of high-throughput curve fitting. Compared with NLS, the new method provides stable and robust solutions without sensitivity to initial values.
机构:
Univ Arkansas, Dept Biomed Engn, Fayetteville, AR 72701 USA
Univ Arkansas, Interdisciplinary Grad Program Cell & Mol Biol, Fayetteville, AR 72701 USA
Univ Arkansas Med Sci, Winthrop P Rockefeller Canc Inst, Canc Biol Program, Little Rock, AR 72205 USAVanderbilt Univ, Dept Biochem, Sch Med, Nashville, TN 37232 USA
机构:
Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Tansey, Wesley
论文数: 引用数:
h-index:
机构:
Li, Kathy
Zhang, Haoran
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, New York, NY USA
Columbia Univ, Appl Phys & Appl Math, New York, NY USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Zhang, Haoran
Linderman, Scott W.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Data Sci Inst, New York, NY USA
Columbia Univ, Med Ctr, New York, NY USA
Columbia Univ, Dept Stat, New York, NY USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Linderman, Scott W.
Rabadan, Raul
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, New York, NY USA
Columbia Univ, Dept Syst Biol, New York, NY USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Rabadan, Raul
Blei, David M.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Data Sci Inst, New York, NY USA
Columbia Univ, Med Ctr, New York, NY USA
Columbia Univ, Dept Stat, New York, NY USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
Blei, David M.
Wiggins, Chris H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Data Sci Inst, New York, NY USA
Columbia Univ, Med Ctr, New York, NY USA
Columbia Univ, Appl Phys & Appl Math, New York, NY USA
Columbia Univ, Dept Syst Biol, New York, NY USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA