Approximating layout problems on random graphs

被引:5
|
作者
Díaz, J
Petit, J
Serna, M
Trevisan, L
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemes Informat, Barcelona 08034, Spain
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
D O I
10.1016/S0012-365X(00)00278-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, with overwhelming probability, several well-known layout problems are approximable within a constant for random graphs drawn from the G(n, p(n)) model where C/n less than or equal to p(n) less than or equal to 1 for all n big enough and for some properly characterized parameter C > 1. In fact, our results establish that, with overwhelming probability, the cost of any arbitrary layout of such a random graph is within a constant of the optimal cost. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [1] Approximating layout problems on random geometric graphs
    Diaz, J
    Penrose, MD
    Petit, J
    Serna, M
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 39 (01): : 78 - 116
  • [2] Layout of random circulant graphs
    Richter, Sebastian
    Rocha, Israel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 559 : 95 - 113
  • [3] Hardness of approximating problems on cubic graphs
    Alimonti, P
    Kann, V
    ALGORITHMS AND COMPLEXITY, 1997, 1203 : 288 - 298
  • [4] Approximating random quantum optimization problems
    Hsu, B.
    Laumann, C. R.
    Laeuchli, A. M.
    Moessner, R.
    Sondhi, S. L.
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [5] Approximating optimization problems in graphs with locational uncertainty
    Bougeret, Marin
    Omer, Jeremy
    Poss, Michael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (03):
  • [6] Approximating sparse graphs: The random overlapping communities model
    Petti, Samantha
    Vempala, Santosh S.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 844 - 908
  • [7] STATISTICAL PROBLEMS ON RANDOM GRAPHS
    GRUSHO, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (03) : 548 - 548
  • [8] Random polynomial graphs for random Turan problems
    Spiro, Sam
    JOURNAL OF GRAPH THEORY, 2024, 105 (02) : 192 - 208
  • [9] Convergence theorems for some layout measures on random lattice and random geometric graphs
    Díaz, J
    Penrose, MD
    Petit, J
    Serna, M
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (06): : 489 - 511
  • [10] MAX k-CUT and approximating the chromatic number of random graphs
    Coja-Oghlan, A
    Moore, C
    Sanwalani, V
    RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (03) : 289 - 322