Probabilistic Semantic Occupancy Grid Mapping Considering the Uncertainty of Semantic Segmentation with IPM

被引:2
|
作者
Kobayashi, Shigeki [1 ,2 ]
Sasaki, Yoko [2 ]
Yorozu, Ayanori [1 ]
Ohya, Akihisa [1 ]
机构
[1] Univ Tsukuba, Grad Sch Sci & Technol, I-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Natl Inst Adv Ind Sci & Technol, 2-3-26 Aomi,Koto Ku, Tokyo 1350064, Japan
关键词
D O I
10.1109/AIM52237.2022.9863353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An occupancy grid map considering only geometric information is often used for autonomous mobile robots. There are various areas we do not want autonomous robots to enter outdoors, such as grass areas. These areas are not reflected in the occupancy grid map because geometric information is not sufficient to distinguish these areas. This work attempts to add semantic information about the ground surface to a prior occupancy grid map for recognizing traversable regions. We create a semantically segmented bird's eye view (BEV) using semantic segmentation and inverse perspective mapping (IPM) and then apply a one-sided truncated Gaussian filter and binary Bayes filter to deal with the uncertainty of semantic segmentation and IPM. We tested our method on an approximately 1-km route at the University of Tsukuba and found that the recognition accuracy is highest if we apply these two filters together.
引用
收藏
页码:250 / 255
页数:6
相关论文
共 50 条
  • [1] Semantic Grid Estimation with Occupancy Grids and Semantic Segmentation Networks
    Erkent, Ozgur
    Wolf, Christian
    Laugier, Christian
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1051 - 1056
  • [2] Occupancy Grid Map Construction Based on Semantic Segmentation and a Priori Knowledge
    Li, Gang
    Fan, Yongqiang
    Li, Jianhua
    Lu, Jianfeng
    IEEE Access, 2024, 12 : 186617 - 186625
  • [3] Semantic Segmentation of Crops and Weeds with Probabilistic Modeling and Uncertainty Quantification
    Celikkan, Ekin
    Saberioon, Mohammadmehdi
    Herold, Martin
    Klein, Nadja
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 582 - 592
  • [4] Semantic Segmentation for Aerial Mapping
    Martinez-Soltero, Gabriel
    Alanis, Alma Y.
    Arana-Daniel, Nancy
    Lopez-Franco, Carlos
    MATHEMATICS, 2020, 8 (09)
  • [5] Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping
    Bressan, Patrik Ola
    Marcato Junior, Jose
    Martins, Jose Augusto Correa
    de Melo, Maximilian Jaderson
    Goncalves, Diogo Nunes
    Freitas, Daniel Matte
    Ramos, Ana Paula Marques
    Furuya, Michelle Tais Gracia
    Osco, Lucas Prado
    Silva, Jonathan de Andrare
    Luo, Zhipeng
    Garcia, Raymundo Dordero
    Ma, Lingfei
    Li, Jonathan
    Goncalves, Wesley Nunes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [6] Monocular Semantic Occupancy Grid Mapping With Convolutional Variational Encoder-Decoder Networks
    Lu, Chenyang
    van de Molengraft, Marinus Jacobus Gerardus
    Dubbelman, Gijs
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 445 - 452
  • [7] Hyperbolic Uncertainty Aware Semantic Segmentation
    Chen, Bike
    Peng, Wei
    Cao, Xiaofeng
    Roning, Juha
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1275 - 1290
  • [8] ConvBKI: Real-Time Probabilistic Semantic Mapping Network With Quantifiable Uncertainty
    Wilson, Joey
    Fu, Yuewei
    Friesen, Joshua
    Ewen, Parker
    Capodieci, Andrew
    Jayakumar, Paramsothy
    Barton, Kira
    Ghaffari, Maani
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 4648 - 4667
  • [9] Semantic Mapping with a Probabilistic Description Logic
    Polastro, Rodrigo
    Correa, Fabiano
    Cozman, Fabio
    Okamoto, Jun, Jr.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2010, 2010, 6404 : 62 - 71
  • [10] Semantic Segmentation-Based Occupancy Grid Map Learning With Automotive Radar Raw Data
    Jin, Yi
    Hoffmann, Marcel
    Deligiannis, Anastasios
    Fuentes-Michel, Juan-Carlos
    Vossiek, Martin
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 216 - 230