Inverse design of 3d molecular structures with conditional generative neural networks

被引:111
作者
Gebauer, Niklas W. A. [1 ,2 ,3 ]
Gastegger, Michael [1 ,3 ]
Hessmann, Stefaan S. P. [1 ,2 ]
Mueller, Klaus-Robert [1 ,2 ,4 ,5 ]
Schuett, Kristof T. [1 ,2 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Berlin Inst Fdn Learning & Data, D-10587 Berlin, Germany
[3] Tech Univ Berlin, BASLEARN TU Berlin BASF Joint Lab Machine Learnin, D-10587 Berlin 10587, Germany
[4] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
[5] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
MODELS;
D O I
10.1038/s41467-022-28526-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The targeted discovery of molecules with specific structural and chemical properties is an open challenge in computational chemistry. Here, the authors propose a conditional generative neural network for the inverse design of 3d molecular structures. The rational design of molecules with desired properties is a long-standing challenge in chemistry. Generative neural networks have emerged as a powerful approach to sample novel molecules from a learned distribution. Here, we propose a conditional generative neural network for 3d molecular structures with specified chemical and structural properties. This approach is agnostic to chemical bonding and enables targeted sampling of novel molecules from conditional distributions, even in domains where reference calculations are sparse. We demonstrate the utility of our method for inverse design by generating molecules with specified motifs or composition, discovering particularly stable molecules, and jointly targeting multiple electronic properties beyond the training regime.
引用
收藏
页数:11
相关论文
共 71 条
[1]   End-to-End Differentiable Learning of Protein Structure [J].
AlQuraishi, Mohammed .
CELL SYSTEMS, 2019, 8 (04) :292-+
[2]  
[Anonymous], RDKIT OPEN SOURCE CH
[3]  
Batzner S., 2021, ARXIV PREPRINT ARXIV, V2101, P03164
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[6]   Machine learning meets chemical physics [J].
Ceriotti, Michele ;
Clementi, Cecilia ;
Anatole von Lilienfeld, O. .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16)
[7]   Towards exact molecular dynamics simulations with machine-learned force fields [J].
Chmiela, Stefan ;
Sauceda, Huziel E. ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
NATURE COMMUNICATIONS, 2018, 9
[8]   FCHL revisited: Faster and more accurate quantum machine learning [J].
Christensen, Anders S. ;
Bratholm, Lars A. ;
Faber, Felix A. ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04)
[9]   Deep learning for molecular design-a review of the state of the art [J].
Elton, Daniel C. ;
Boukouvalas, Zois ;
Fuge, Mark D. ;
Chung, Peter W. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :828-849
[10]   Search for Catalysts by Inverse Design: Artificial Intelligence, Mountain Climbers, and Alchemists [J].
Freeze, Jessica G. ;
Kelly, H. Ray ;
Batista, Victor S. .
CHEMICAL REVIEWS, 2019, 119 (11) :6595-6612