More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

被引:44
|
作者
Bhunia, Ayan Kumar [1 ]
Chowdhury, Pinaki Nath [1 ,2 ]
Sain, Aneeshan [1 ,2 ]
Yang, Yongxin [1 ,2 ]
Xiang, Tao [1 ,2 ]
Song, Yi-Zhe [1 ,2 ]
机构
[1] Univ Surrey, CVSSP, SketchX, Guildford, Surrey, England
[2] iFlyTek Surrey Joint Res Ctr Artificial Intellige, Guildford, Surrey, England
关键词
D O I
10.1109/CVPR46437.2021.00423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A fundamental challenge faced by existing Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) models is the data scarcity - model performances are largely bottlenecked by the lack of sketch-photo pairs. Whilst the number of photos can be easily scaled, each corresponding sketch still needs to be individually produced. In this paper, we aim to mitigate such an upper-bound on sketch data, and study whether unlabelled photos alone (of which they are many) can be cultivated for performance gain. In particular, we introduce a novel semi-supervised framework for cross-modal retrieval that can additionally leverage large-scale unlabelled photos to account for data scarcity. At the center of our semi-supervision design is a sequential photo-to-sketch generation model that aims to generate paired sketches for unlabelled photos. Importantly, we further introduce a discriminator-guided mechanism to guide against unfaithful generation, together with a distillation loss-based regularizer to provide tolerance against noisy training samples. Last but not least, we treat generation and retrieval as two conjugate problems, where a joint learning procedure is devised for each module to mutually benefit from each other. Extensive experiments show that our semi-supervised model yields a significant performance boost over the state-of-the-art supervised alternatives, as well as existing methods that can exploit unlabelled photos for FG-SBIR.
引用
收藏
页码:4245 / 4254
页数:10
相关论文
共 50 条
  • [1] Fine-Grained Adversarial Semi-Supervised Learning
    Mugnai, Daniele
    Pernici, Federico
    Turchini, Francesco
    Del Bimbo, Alberto
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [2] Accuracy improvement for fine-grained image classification with semi-supervised learning
    Yu, Lei
    Cheng, Le
    Zhang, Jinli
    Zhu, Hongna
    Gao, Xiaorong
    2019 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2019,
  • [3] A review of fine-grained sketch image retrieval based on deep learning
    Luo, Qing
    Gao, Xiang
    Jiang, Bo
    Yan, Xueting
    Liu, Wanyuan
    Ge, Junchao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 21186 - 21210
  • [4] Improving classification with semi-supervised and fine-grained learning
    Lai, Danyu
    Tian, Wei
    Chen, Long
    PATTERN RECOGNITION, 2019, 88 : 547 - 556
  • [5] A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification
    Su, Jong-Chyi
    Cheng, Zezhou
    Maji, Subhransu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12961 - 12970
  • [6] Fine-Grained Color Sketch-Based Image Retrieval
    Xia, Yu
    Wang, Shuangbu
    Li, Yanran
    You, Lihua
    Yang, Xiaosong
    Zhang, Jian Jun
    ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 424 - 430
  • [7] Adaptive Fine-Grained Sketch-Based Image Retrieval
    Bhunia, Ayan Kumar
    Sain, Aneeshan
    Shah, Parth Hiren
    Gupta, Animesh
    Chowdhury, Pinaki Nath
    Xiang, Tao
    Song, Yi-Zhe
    COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 163 - 181
  • [8] Generalising Fine-Grained Sketch-Based Image Retrieval
    Pang, Kaiyue
    Li, Ke
    Yang, Yongxin
    Zhang, Honggang
    Hospedales, Timothy M.
    Xiang, Tao
    Song, Yi-Zhe
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 677 - 686
  • [9] Semi-Supervised Learning for Fine-Grained Classification With Self-Training
    Nartey, Obed Tettey
    Yang, Guowu
    Wu, Jinzhao
    Asare, Sarpong Kwadwo
    IEEE ACCESS, 2020, 8 : 2109 - 2121
  • [10] Gradually focused fine-grained sketch-based image retrieval
    Zhu, Ming
    Chen, Chun
    Wang, Nian
    Tang, Jun
    Bao, Wenxia
    PLOS ONE, 2019, 14 (05):