Kelvin probe force microscopy for the characterization of semiconductor surfaces in chalcopyrite solar cells

被引:13
|
作者
Sommerhalter, C [1 ]
Sadewasser, S [1 ]
Glatzel, T [1 ]
Matthes, TW [1 ]
Jäger-Waldau, A [1 ]
Lux-Steiner, MC [1 ]
机构
[1] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
atomic force microscopy; work function measurements; surface photovoltage; heterojunctions; semiconducting surfaces;
D O I
10.1016/S0039-6028(01)00878-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kelvin probe force microscopy in ultrahigh vacuum is a powerful technique for the quantitative characterization of structural and electronic properties of semiconductor surfaces and interfaces on a nanometer scale. In chalcopyrite heterojunction solar cells the interfaces play a crucial role for the performance of the device. We studied chalcopyrite heterostructures based on epitaxial CuGaSe2 thin films prepared by MOVPE. Lateral variations of the contact potential difference and the surface photovoltage (SPV) were investigated after different process steps, including the deposition of n-CdS or n-ZnSe buffer layers and the n(+)-ZnO window layer. Measurements on the CuGaSe2 absorber material show terraces with preferential orientation in the [110] direction in the topographic image. A negative SPV of -300 mV on the as-grown CuGaSe2 absorber could be attributed to a highly doped p(+)-Cu2-xSe surface layer of a few nm thickness, which was removed by a KCN etch, resulting in a flat band condition. The deposition of the buffer layer alone does not lead to a significant band bending at the CuGaSe2/buffer interface and the deposition of the ZnO window layer seems to be crucial for the development of the band bending within the absorber. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1362 / 1367
页数:6
相关论文
共 50 条
  • [1] Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices
    Sadewasser, S
    Glatzel, T
    Schuler, S
    Nishiwaki, S
    Kaigawa, R
    Lux-Steiner, MC
    THIN SOLID FILMS, 2003, 431 : 257 - 261
  • [2] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [3] Kelvin probe force microscopy for characterization of semiconductor devices and processes
    Tanimoto, M
    Vatel, O
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02): : 1547 - 1551
  • [5] Kelvin probe force microscopy on corona charged oxidized semiconductor surfaces
    Lägel, B
    Ayala, MD
    Schlaf, R
    APPLIED PHYSICS LETTERS, 2004, 85 (20) : 4801 - 4803
  • [6] Kelvin probe force microscopy of molecular surfaces
    Fujihira, M
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 : 353 - 380
  • [7] Kelvin probe force microscopy of semiconductor surface defects
    Rosenwaks, Y
    Shikler, R
    Glatzel, T
    Sadewasser, S
    PHYSICAL REVIEW B, 2004, 70 (08) : 085320 - 1
  • [8] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    MICROSCOPY, 2022, 71 : i165 - i173
  • [9] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [10] Polarized tips or surfaces: Consequences in Kelvin probe force microscopy
    Hynninen, T.
    Foster, A.S.
    Barth, C.
    e-Journal of Surface Science and Nanotechnology, 2011, 9 : 6 - 14