Quantum Integrals And The Affineness Criterion For Quantum Yetter-Drinfeld π-Modules

被引:0
|
作者
Chen Quan-guo [1 ,2 ]
Wang Shuan-hong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Yili Normal Univ, Sch Math & Stat, Yining 835000, Peoples R China
关键词
Hopf pi-coalgebras; Quantum integrals; Quantum Yetter-Drinfeld pi-modules; HOPF GROUP-COALGEBRAS; GALOIS EXTENSIONS; ALGEBRAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the quantum integrals associated to quantum Yetter-Drinfeld pi-modules are defined. We shall prove the following affineness criterion: if there exists theta = {theta(beta) : H-beta -> Hom(H beta-1, A)}(beta is an element of pi), a total quantum integral and the canonical map chi : A circle times(B) A -> circle plus(gamma is an element of pi) H-gamma circle times A, chi(a circle times(B) b) = circle plus(gamma is an element of pi) S-gamma(-1) phi(alpha)(b([1,alpha-1 gamma-1 alpha]))b([0,0]<-1,gamma >) circle times ab([0,0]< 0,0 >) is surjective. Then the induction functor - circle times(B) A : u(B) ->(H) yD(Lambda)(alpha) is an equivalence of categories. The affineness criterion proven by Menini and Militaru is recovered as special cases.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 50 条
  • [1] Integrals, quantum Galois extensions, and the affineness criterion for quantum Yetter-Drinfel'd modules
    Menini, C
    Militaru, G
    JOURNAL OF ALGEBRA, 2002, 247 (02) : 467 - 508
  • [2] HOPF MODULES AND YETTER-DRINFELD MODULES
    SCHAUENBURG, P
    JOURNAL OF ALGEBRA, 1994, 169 (03) : 874 - 890
  • [3] 5 Yetter-Drinfeld modules and the quantum Yang-Baxter equation
    不详
    FROBENIUS AND SEPARABLE FUNCTORS FOR GENERALIZED MODULE CATEGORIES AND NONLINEAR EQUATIONS, 2002, 1787 : 217 - 243
  • [4] THE AFFINENESS CRITERION FOR QUANTUM HOM-YETTER DRINFEL'D MODULES
    Guo, Shuangjian
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (02) : 169 - 185
  • [5] Hopf modules in Yetter-Drinfeld categories
    Doi, Y
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) : 3057 - 3070
  • [6] Yetter-Drinfeld modules for crossed structures
    Zunino, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 193 (1-3) : 313 - 343
  • [7] Parachain Complexes and Yetter-Drinfeld Modules
    Zhu, Haixing
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 125 - 134
  • [8] Ribbon Yetter-Drinfeld modules and tangle invariants
    Habiro, Kazuo
    Kotorii, Yuka
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [9] Yetter-Drinfeld modules under cocycle twists
    Benkart, Georgia
    Pereira, Mariana
    Witherspoon, Sarah
    JOURNAL OF ALGEBRA, 2010, 324 (11) : 2990 - 3006
  • [10] Yetter-Drinfeld modules over weak bialgebras
    Caenepeel S.
    Wang D.
    Yin Y.
    Annali dell’Università di Ferrara, 2005, 51 (1): : 69 - 98