Complexity penalized M-estimation: Fast computation

被引:61
|
作者
Friedrich, F. [2 ]
Kempe, A. [1 ]
Liebscher, V. [3 ]
Winkler, G. [1 ]
机构
[1] GSF Natl Res Ctr Environm & Hlth, IBB Inst Biomath & Biometry, D-85758 Oberschleissheim, Germany
[2] ETH Zentrum RZ H9, CH-8092 Zurich, Switzerland
[3] Univ Greifswald, D-17487 Greifswald, Germany
关键词
Blake-Zisserman functional; complexity penalized variational problems; edge-preserving smoothing; Potts model; regularization; segmentation; time series;
D O I
10.1198/106186008X285591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present very fast algorithms for the exact computation of estimators for time series, based on complexity penalized log-likelihood or M-functions. The algorithms apply to a wide range of functionals with morphological constraints, in particular to Potts or Blake-Zisserman functionals. The latter are the discrete versions of the celebrated Mumford-Shah functionals. All such functionals contain model parameters. Our algorithms allow for optimization not only for each separate parameter, but even for all parameters simultaneously. This allows for the examination of the models in the sense of a family approach. The algorithms are accompanied by a series of illustrative examples from molecular biology.
引用
收藏
页码:201 / 224
页数:24
相关论文
共 50 条
  • [1] Complexity L-0-Penalized M-Estimation: Consistency in More Dimensions
    Demaret, Laurent
    Friedrich, Felix
    Liebscher, Volkmar
    Winkler, Gerhard
    AXIOMS, 2013, 2 (03) : 311 - 344
  • [2] Penalized unimodal spline density estimation with application to M-estimation
    Chen, Xin
    Meyer, Mary C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 224 : 84 - 97
  • [3] Adaptive penalized M-estimation with current status data
    Shuangge Ma
    Michael R. Kosorok
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 511 - 526
  • [4] NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS
    Li, Gaorong
    Peng, Heng
    Zhu, Lixing
    STATISTICA SINICA, 2011, 21 (01) : 391 - 419
  • [5] Weak Convergence of the Regularization Path in Penalized M-Estimation
    Germain, Jean-Francois
    Roueff, Francois
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (03) : 477 - 495
  • [6] Adaptive penalized M-estimation with current status data
    Ma, Shuangge
    Kosorok, Michael R.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (03) : 511 - 526
  • [7] Nonconcave penalized M-estimation for the least absolute relative errors model
    Fan, Ruiya
    Zhang, Shuguang
    Wu, Yaohua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1118 - 1135
  • [8] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    STAT, 2021, 10 (01):
  • [9] Penalized M-Estimation Based on Standard Error Adjusted Adaptive Elastic-Net
    WU Xianjun
    WANG Mingqiu
    HU Wenting
    TIAN Guo-Liang
    LI Tao
    JournalofSystemsScience&Complexity, 2023, 36 (03) : 1265 - 1284
  • [10] Penalized M-Estimation Based on Standard Error Adjusted Adaptive Elastic-Net
    Xianjun Wu
    Mingqiu Wang
    Wenting Hu
    Guo-Liang Tian
    Tao Li
    Journal of Systems Science and Complexity, 2023, 36 : 1265 - 1284