On volumes and filling collections of multicurves

被引:4
|
作者
Cremaschi, Tommaso [1 ]
Rodrigurz-Migueles, Jose Andres [2 ]
Yarmola, Andrew [3 ]
机构
[1] Univ Luxembourg, Dept Math, Esch Sur Alzette, Luxembourg
[2] Univ Munich, Math Inst, Munich, Germany
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
芬兰科学院;
关键词
QUADRATIC-DIFFERENTIALS; 3-MANIFOLDS; GEOMETRY; COMPLEX;
D O I
10.1112/topo.12246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S$S$ be a surface of negative Euler characteristic and consider a finite filling collection Gamma$\Gamma$ of closed curves on S$S$ in minimal position. An observation of Foulon and Hasselblatt shows that PT(S) set minus Gamma$PT(S) \setminus \widehat {\Gamma }$ is a finite-volume hyperbolic 3-manifold, where PT(S)$PT(S)$ is the projectivized tangent bundle and Gamma$\widehat \Gamma$ is the set of tangent lines to Gamma$\Gamma$. In particular, vol(PT(S) set minus Gamma)$vol(PT(S) \setminus \widehat {\Gamma })$ is a mapping class group invariant of the collection Gamma$\Gamma$. When Gamma$\Gamma$ is a filling pair of simple closed curves, we show that this volume is coarsely comparable to Weil-Petersson distance between strata in Teichmuller space. Our main tool is the study of stratified hyperbolic links Gamma over bar $\overline{\Gamma }$ in a Seifert-fibered space N$N$ over S$S$. For such links, the volume of N set minus Gamma over bar $N\setminus \overline{\Gamma }$ is coarsely comparable to expressions involving distances in the pants graph.
引用
收藏
页码:1034 / 1080
页数:47
相关论文
共 50 条
  • [1] Multicurves and Equivariant Cohomology
    Strickland, N. P.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 213 (1001) : 1 - +
  • [2] Hyperbolicity of the graph of nonseparating multicurves
    Hamenstaedt, Ursula
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03): : 1759 - 1778
  • [3] COLLECTIONS FILLING UP A SIMPLE PLANE WEB
    BING, RH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (10) : 674 - 679
  • [4] Thickness and relative hyperbolicity for graphs of multicurves
    Russell, Jacob
    Vokes, Kate M.
    JOURNAL OF TOPOLOGY, 2022, 15 (04) : 2317 - 2351
  • [5] ROOTS OF DEHN TWISTS ABOUT MULTICURVES
    Rajeevsarathy, Kashyap
    Vaidyanathan, Prahlad
    GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (03) : 555 - 583
  • [6] INTERSECTIONS OF MULTICURVES FROM DYNNIKOV COORDINATES
    Yurttas, S. Oyku
    Hall, Toby
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 149 - 158
  • [7] Cosmetic operations and Khovanov multicurves
    Kotelskiy, Artem
    Lidman, Tye
    Moore, Allison H.
    Watson, Liam
    Zibrowius, Claudius
    MATHEMATISCHE ANNALEN, 2024, 389 (03) : 2903 - 2930
  • [8] Hierarchical hyperbolicity of graphs of multicurves
    Yokes, Kate M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 113 - 151
  • [9] Rectal filling sensations are not impaired in patients with increased rectal volumes
    Verkuijl, S. J.
    Trzpis, M.
    Broens, P. M. A.
    NEUROGASTROENTEROLOGY AND MOTILITY, 2016, 28 : 45 - 45
  • [10] Cuff filling volumes and pressures in pediatric laryngeal mask airways
    Maino, P
    Dullenkopf, A
    Keller, C
    Bernet-Buettiker, V
    Weiss, M
    PEDIATRIC ANESTHESIA, 2006, 16 (01) : 25 - 30